You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The new research area of genomics-inspired network biology lacks an introductory book that enables both physical/computational scientists and biologists to obtain a general yet sufficiently rigorous perspective of current thinking. Filling this gap, Introduction to Biological Networks provides a thorough introduction to genomics-inspired network bi
Drawing on the latest research in the field, Systems Biology: Mathematical Modeling and Model Analysis presents many methods for modeling and analyzing biological systems, in particular cellular systems. It shows how to use predictive mathematical models to acquire and analyze knowledge about cellular systems. It also explores how the models are systematically applied in biotechnology. The first part of the book introduces biological basics, such as metabolism, signaling, gene expression, and control as well as mathematical modeling fundamentals, including deterministic models and thermodynamics. The text also discusses linear regression methods, explains the differences between linear and n...
Using examples from finance and modern warfare to the flocking of birds and the swarming of bacteria, the collected research in this volume demonstrates the common methodological approaches and tools for modeling and simulating collective behavior. The topics presented point toward new and challenging frontiers of applied mathematics, making the volume a useful reference text for applied mathematicians, physicists, biologists, and economists involved in the modeling of socio-economic systems.
This book—unique in the literature—provides readers with the mathematical background needed to design many of the optical combinations that are used in astronomical telescopes and cameras. The results presented in the work were obtained by using a different approach to third-order aberration theory as well as the extensive use of the software package Mathematica®. Replete with workout examples and exercises, Geometric Optics is an excellent reference for advanced graduate students, researchers, and practitioners in applied mathematics, engineering, astronomy, and astronomical optics. The work may be used as a supplementary textbook for graduate-level courses in astronomical optics, optical design, optical engineering, programming with Mathematica, or geometric optics.
Develops different mathematical methods and tools to model living systems. This book presents material that can be used in such real-world applications as immunology, transportation engineering, and economics. It is of interest to those involved in modeling complex social systems and living matter in general.
This volume describes and discusses recent advances in angiogenesis research. The chapters are organized to address all biological length scales of angiogenesis: molecular, cellular and tissue in both in vivo and in vitro settings. Specific emphasis is given to novel methodologies and biomaterials that have been developed and applied to angiogenesis research. Angiogenesis experts from diverse fields including engineering, cell and developmental biology, chemistry and physics will be invited to contribute chapters which focus on the mechanical and chemical signals which affect and promote angiogenesis.
This self-contained book is an up-to-date description of the basic theory of molecular gas dynamics and its various applications. The book, unique in the literature, presents working knowledge, theory, techniques, and typical phenomena in rarefied gases for theoretical development and application. Basic theory is developed in a systematic way and presented in a form easily applied for practical use. In this work, the ghost effect and non-Navier–Stokes effects are demonstrated for typical examples—Bénard and Taylor–Couette problems—in the context of a new framework. A new type of ghost effect is also discussed.
Combining control theory and modeling, this textbook introduces and builds on methods for simulating and tackling concrete problems in a variety of applied sciences. Emphasizing "learning by doing," the authors focus on examples and applications to real-world problems. An elementary presentation of advanced concepts, proofs to introduce new ideas, and carefully presented MATLAB® programs help foster an understanding of the basics, but also lead the way to new, independent research. With minimal prerequisites and exercises in each chapter, this work serves as an excellent textbook and reference for graduate and advanced undergraduate students, researchers, and practitioners in mathematics, physics, engineering, computer science, as well as biology, biotechnology, economics, and finance.
Arriving in America in 1904, Carlo Tresca began a nearly forty-year stretch as an active revolutionary. Nunzio Pernicone's definitive biography chronicles Tresca's larger-than-life personality, his revolutionary apprenticeship in Sulmona, Italy, and his subsequent career as fighter for liberty until his untimely death in 1943. The story of his life - as newspaper editor, labor agitator, anarchist, anti-communist, street fighter, and opponent of fascism - illuminates the lost world of Italian-American radicalism. Among friends and comrades Tresca counted revolutionary luminaries such as Elizabeth Gurley Flynn, Big Bill Haywood, Alexander Berkman, Emma Goldman, and countless sovversivi. From his work on behalf of the IWW, to his editorship of numerous papers, including Il Proletario and Il Martello, and his assassination on the streets of New York City, Tresca's passion left a permanent mark on the American map.
The study of kinetic equations related to gases, semiconductors, photons, traffic flow, and other systems has developed rapidly in recent years because of its role as a mathematical tool in areas such as engineering, meteorology, biology, chemistry, materials science, nanotechnology, and pharmacy. Written by leading specialists in their respective fields, this book presents an overview of recent developments in the field of mathematical kinetic theory with a focus on modeling complex systems, emphasizing both mathematical properties and their physical meaning. Transport Phenomena and Kinetic Theory is an excellent self-study reference for graduate students, researchers, and practitioners working in pure and applied mathematics, mathematical physics, and engineering. The work may be used in courses or seminars on selected topics in transport phenomena or applications of the Boltzmann equation.