You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Damage to the central nervous system resulting from pathological mechanical loading can occur as a result of trauma or disease. Such injuries lead to significant disability and mortality. The peripheral nervous system, while also subject to injury from trauma and disease, also transduces physiological loading to give rise to sensation, and mechanotransduction is also thought to play a role in neural development and growth. This book gives a complete and quantitative description of the fundamental mechanical properties of neural tissues, and their responses to both physiological and pathological loading. This book reviews the methods used to characterize the nonlinear viscoelastic properties ...
This book portrays the commonality of tissue micro-structure that dictates physiological function in various organs (microstructure-function relation). Tissue and organ models are used to illustrate physiological functions based on microstructure. Fiber scale properties such as orientation and crimp are described in detail. Structurally-based constitutive models are given throughout the book, not only to avoid ambiguities in material characterization, but also to offer insights into the function, structure, and mechanics of tissue components. A statement of future directions of the field is also given, including how advancements, such as state-of-the-art computational modeling and optical measurements of tissue/cells structures, are taking structure-based modeling to the next level. This book also: Provides a comprehensive view of tissue modeling across multiple systems Broadens readers’ understanding of state-of-the-art computational modeling and optical measurements of tissue/cells structures Describes in detail fiber scale properties such as orientation and crimp
Biomechanics covers a wide field such as organ mechanics, tissue mechanics, cell mechanics to molecular mechanics. At the 6th World Congress of Biomechanics WCB 2010 in Singapore, authors presented the largest experimental studies, technologies and equipment. Special emphasis was placed on state-of-the-art technology and medical applications. This volume presents the Proceedings of the 6th WCB 2010 which was hold in conjunction with 14th International Conference on Biomedical Engineering (ICBME) & 5th Asia Pacific Conference on Biomechanics (APBiomech). The peer reviewed scientific papers are arranged in the six themes Organ Mechanics, Tissue Mechanics, Cell Mechanics, Molecular Mechanics, Materials, Tools, Devices & Techniques, Special Topics.
This new edition presents an authoritative account of the current state of brain biomechanics research for engineers, scientists and medical professionals. Since the first edition in 2011, this topic has unquestionably entered into the mainstream of biomechanical research. The book brings together leading scientists in the diverse fields of anatomy, neuroimaging, image-guided neurosurgery, brain injury, solid and fluid mechanics, mathematical modelling and computer simulation to paint an inclusive picture of the rapidly evolving field. Covering topics from brain anatomy and imaging to sophisticated methods of modeling brain injury and neurosurgery (including the most recent applications of biomechanics to treat epilepsy), to the cutting edge methods in analyzing cerebrospinal fluid and blood flow, this book is the comprehensive reference in the field. Experienced researchers as well as students will find this book useful.
This book is the fourth volume of the book Brain Functioning and Regeneration and is written as a basis for a programming project for dream analysis, DreamWorks, and the production of a dream virtual monitoring software. I would like to emphasize again that many statements in this text are claims and still not approved. However, as a model, they are essential to complete a detailed frame for programming intentions. The claims will be counterchecked with latest researches and will be refined for the noncontingencies continuously. I hope that in the near future, it helps to develop the unknown areas in the subject as well as provide an advanced software that is unique in its subject and services.
Stress in common term refers to an excessive or a long term exposure to outside pressures. However, this term initially was taken from physics and engineering which defines stress as mutual actions of forces that take place across any section, here the layers of the brain. ranges of stress can be classified as normal, high and excessive (stress as it is used in daily conversation) in respect to the brain elasticity property. Any sensory input enters into brain with a physical effect of stress on the brain. it is normally within the safe range of absorption by the brain as an elastic material. the respond to the entered stress would be shut off immediately afterwards. the duration of its effe...
None
Abrasive technology is becoming increasingly important in precision manufacturing. This volume contains more than 70 refereed technical papers contributed by worldwide academic researchers and industrial practitioners, on the latest development in abrasive technology. Specifically, it covers the mechanics and mechanisms of abrasive processes as well as the technologies and applications related to abrasive jet machining, nano-machining, grinding, polishing, horning and lapping. It also includes topics on high-speed machining, eco-machining and laser micro-machining technologies. The discussion on the practical applications of abrasive technology and the associated theories makes this book useful for academic researchers and industrial practitioners.
Computational Biomechanics for Medicine: Solid and fluid mechanics for the benefit of patients contributions and papers from the MICCAI Computational Biomechanics for Medicine Workshop help in conjunction with Medical Image Computing and Computer Assisted Intervention conference (MICCAI 2019) in Shenzhen, China. The content is dedicated to research in the field of methods and applications of computational biomechanics to medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, analysis of injury mechanisms, implant and prostheses design, as well as artificial organ design and medical robotics. These proceedings appeal to researchers, students and professionals in the field.