You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents a compilation of selected papers from the 17th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2018), focusing on use of deep learning technology in application like game playing, medical applications, video analytics, regression/classification, object detection/recognition and robotic control in industrial environments. It highlights novel ways of using deep neural networks to solve real-world problems, and also offers insights into deep learning architectures and algorithms, making it an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.
Deep Learning and its Applications book chapter is intended to provide various deep insight about Deep learning in various applications. According to current Industry 4.0 standards, Deep learning on the emerging research area to give various services to IT and ITeS. In this book chapter various real time applications are taken for evaluating deep learning approach. Deep Learning is the subset of machine learning which has further learned results of artificial intelligent applications. Artificial Intelligent is the current scenario for making effective decisions. Here the applications are medical image processing, moving objects, image analysis, classification, clustering, prediction, and restoration used to identify various results. Based on each chapter different problems are taken for evaluation and apply different deep learning principles to find accuracy, precision, and score functions. Supervised and Unsupervised learning techniques, TensorFlow, Yolo classifier and Colabs are used to simulate the applications. In this book chapters are very useful for researchers, students, and faculty community to learn about Deep Learning in current trends.
Machine Learning (ML) algorithms have shown a high level of accuracy, and applications are widely used in many systems and platforms. However, developing efficient ML-based systems requires addressing three problems: energy-efficiency, robustness, and techniques that typically focus on optimizing for a single objective/have a limited set of goals. This book tackles these challenges by exploiting the unique features of advanced ML models and investigates cross-layer concepts and techniques to engage both hardware and software-level methods to build robust and energy-efficient architectures for these advanced ML networks. More specifically, this book improves the energy efficiency of complex m...
This book presents a compilation of extended version of selected papers from the 19th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2020) and focuses on deep learning networks in applications such as pneumonia detection in chest X-ray images, object detection and classification, RGB and depth image fusion, NLP tasks, dimensionality estimation, time series forecasting, building electric power grid for controllable energy resources, guiding charities in maximizing donations, and robotic control in industrial environments. Novel ways of using convolutional neural networks, recurrent neural network, autoencoder, deep evidential active learning, deep rapid class a...
Methods and Techniques in Deep Learning Introduces multiple state-of-the-art deep learning architectures for mmWave radar in a variety of advanced applications Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions provides a timely and authoritative overview of the use of artificial intelligence (AI)-based processing for various mmWave radar applications. Focusing on practical deep learning techniques, this comprehensive volume explains the fundamentals of deep learning, reviews cutting-edge deep metric learning techniques, describes different typologies of reinforcement learning (RL) algorithms, highlights how domain adaptation (DA) can be used for improving the pe...
This book introduces readers to both basic and advanced concepts in deep network models. It covers state-of-the-art deep architectures that many researchers are currently using to overcome the limitations of the traditional artificial neural networks. Various deep architecture models and their components are discussed in detail, and subsequently illustrated by algorithms and selected applications. In addition, the book explains in detail the transfer learning approach for faster training of deep models; the approach is also demonstrated on large volumes of fingerprint and face image datasets. In closing, it discusses the unique set of problems and challenges associated with these models.
This book constitutes the refereed proceedings of the 17th Conference of the Canadian Society for Computational Studies of Intelligence, Canadian AI 2004, held in London, Ontario, Canada in May 2004. The 29 revised full papers and 22 revised short papers were carefully reviewed and selected from 105 submissions. These papers are presented together with the extended abstracts of 14 contributions to the graduate students' track. The full papers are organized in topical sections on agents, natural language processing, learning, constraint satisfaction and search, knowledge representation and reasoning, uncertainty, and neural networks.
Hybrid Intelligent Systems has become an important research topic in computer science and a key application field in science and engineering. This book offers a gentle introduction to the engineering aspects of hybrid intelligent systems, also emphasizing the interrelation with the main intelligent technologies such as genetic algorithms – evolutionary computation, neural networks, fuzzy systems, evolvable hardware, DNA computing, artificial immune systems. A unitary whole of theory and application, the book provides readers with the fundamentals, background information, and practical methods for building a hybrid intelligent system. It treats a panoply of applications, including many in i...
Onomastics is an area of scholarly interest that has grown considerably in importance in recent years. Consequently, the 27th International Congress of Onomastic Sciences, held in 2021 in Kraków, Poland, gathered scholars from all over the world, active in all subfields of onomastic enquiry, as well as those exploring the areas bordering on other disciplines of the humanities. It thus became a venue for presenting state-of-the-art research in the study of proper names, proposing novel approaches and opening new vistas for future research. The present work is the second of the three volumes of conference proceedings that were the fruit of the congress. Devoted to personal naming, it contains...