You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book, first published in 2000, focuses on developments in the study of geodesic flows on homogenous spaces.
This textbook offers an accessible introduction to translation surfaces. Building on modest prerequisites, the authors focus on the fundamentals behind big ideas in the field: ergodic properties of translation flows, counting problems for saddle connections, and associated renormalization techniques. Proofs that go beyond the introductory nature of the book are deftly omitted, allowing readers to develop essential tools and motivation before delving into the literature. Beginning with the fundamental example of the flat torus, the book goes on to establish the three equivalent definitions of translation surface. An introduction to the moduli space of translation surfaces follows, leading int...
he authors introduce and study the notions of hyperbolically embedded and very rotating families of subgroups. The former notion can be thought of as a generalization of the peripheral structure of a relatively hyperbolic group, while the latter one provides a natural framework for developing a geometric version of small cancellation theory. Examples of such families naturally occur in groups acting on hyperbolic spaces including hyperbolic and relatively hyperbolic groups, mapping class groups, , and the Cremona group. Other examples can be found among groups acting geometrically on spaces, fundamental groups of graphs of groups, etc. The authors obtain a number of general results about rotating families and hyperbolically embedded subgroups; although their technique applies to a wide class of groups, it is capable of producing new results even for well-studied particular classes. For instance, the authors solve two open problems about mapping class groups, and obtain some results which are new even for relatively hyperbolic groups.
None
This volume contains the proceedings of the AMS Special Session on Higher Structures in Topology, Geometry, and Physics, held virtually on March 26–27, 2022. The articles give a snapshot survey of the current topics surrounding the mathematical formulation of field theories. There is an intricate interplay between geometry, topology, and algebra which captures these theories. The hallmark are higher structures, which one can consider as the secondary algebraic or geometric background on which the theories are formulated. The higher structures considered in the volume are generalizations of operads, models for conformal field theories, string topology, open/closed field theories, BF/BV formalism, actions on Hochschild complexes and related complexes, and their geometric and topological aspects.
This book offers a panorama of recent advances in the theory of infinite groups. It contains survey papers contributed by leading specialists in group theory and other areas of mathematics. Topics include amenable groups, Kaehler groups, automorphism groups of rooted trees, rigidity, C*-algebras, random walks on groups, pro-p groups, Burnside groups, parafree groups, and Fuchsian groups. The accent is put on strong connections between group theory and other areas of mathematics.
A comprehensive introduction to the role of Property (T), with applications to an amazing number of fields within mathematics.
The structure of the set of all the invariant probabilities and the structure of various types of individual invariant probabilities of a transition function are two topics of significant interest in the theory of transition functions, and are studied in this book. The results obtained are useful in ergodic theory and the theory of dynamical systems, which, in turn, can be applied in various other areas (like number theory). They are illustrated using transition functions defined by flows, semiflows, and one-parameter convolution semigroups of probability measures. In this book, all results on transition probabilities that have been published by the author between 2004 and 2008 are extended ...
The work consists of two introductory courses, developing different points of view on the study of the asymptotic behaviour of the geodesic flow, namely: the probabilistic approach via martingales and mixing (by Stéphane Le Borgne); the semi-classical approach, by operator theory and resonances (by Frédéric Faure and Masato Tsujii). The contributions aim to give a self-contained introduction to the ideas behind the three different approaches to the investigation of hyperbolic dynamics. The first contribution focus on the convergence towards a Gaussian law of suitably normalized ergodic sums (Central Limit Theorem). The second one deals with Transfer Operators and the structure of their spectrum (Ruelle-Pollicott resonances), explaining the relation with the asymptotics of time correlation function and the periodic orbits of the dynamics.