Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Mathematical Modelling of Physical Systems
  • Language: en
  • Pages: 505

Mathematical Modelling of Physical Systems

  • Type: Book
  • -
  • Published: 2018-10-26
  • -
  • Publisher: Springer

Comprehensive and thorough, this monograph emphasizes the main role differential geometry and convex analysis play in the understanding of physical, chemical, and mechanical notions. Central focus is placed on specifying the agreement between the functional framework and its physical necessity and on making clear the intrinsic character of physical elements, independent from specific charts or frames. The book is divided into four sections, covering thermostructure, classical mechanics, fluid mechanics modelling, and behavior laws. An extensive appendix provides notations and definitions as well as brief explanation of integral manifolds, symplectic structure, and contact structure. Plenty of examples are provided throughout the book, and reviews of basic principles in differential geometry and convex analysis are presented as needed. This book is a useful resource for graduate students and researchers in the field.

Mathematical Methods in Electromagnetism
  • Language: en
  • Pages: 396

Mathematical Methods in Electromagnetism

This book provides the reader with basic tools to solve problems of electromagnetism in their natural functional frameworks thanks to modern mathematical methods: integral surface methods, and also semigroups, variational methods, etc., well adapted to a numerical approach. As examples of applications of these tools and concepts, we solve several fundamental problems of electromagnetism, stationary or time-dependent: scattering of an incident wave by an obstacle, bounded or not, by gratings; wave propagation in a waveguide, with junctions and cascades. We hope that mathematical notions will allow a better understanding of modelization in electromagnetism and emphasize the essential features ...

Mathematical Analysis and Numerical Methods for Science and Technology
  • Language: en
  • Pages: 604

Mathematical Analysis and Numerical Methods for Science and Technology

  • Type: Book
  • -
  • Published: 2015-03-20
  • -
  • Publisher: Springer

These 6 volumes - the result of a 10 year collaboration between the authors, two of France's leading scientists and both distinguished international figures - compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form. The advent of large computers has in the m...

Mathematical Analysis and Numerical Methods for Science and Technology
  • Language: en
  • Pages: 503

Mathematical Analysis and Numerical Methods for Science and Technology

The advent of high-speed computers has made it possible for the first time to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way. Every facet of technical and industrial activity has been affected by these developments. The objective of the present work is to compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form.

Mathematical Analysis and Numerical Methods for Science and Technology
  • Language: en
  • Pages: 760

Mathematical Analysis and Numerical Methods for Science and Technology

299 G(t), and to obtain the corresponding properties of its Laplace transform (called the resolvent of - A) R(p) = (A + pl)-l , whose existence is linked with the spectrum of A. The functional space framework used will be, for simplicity, a Banach space(3). To summarise, we wish to extend definition (2) for bounded operators A, i.e. G(t) = exp( - tA) , to unbounded operators A over X, where X is now a Banach space. Plan of the Chapter We shall see in this chapter that this enterprise is possible, that it gives us in addition to what is demanded above, some supplementary information in a number of areas: - a new 'explicit' expression of the solution; - the regularity of the solution taking into account some conditions on the given data (u , u1,f etc ... ) with the notion of a strong solution; o - asymptotic properties of the solutions. In order to treat these problems we go through the following stages: in § 1, we shall study the principal properties of operators of semigroups {G(t)} acting in the space X, particularly the existence of an upper exponential bound (in t) of the norm of G(t). In §2, we shall study the functions u E X for which t --+ G(t)u is differentiable.

Partial Differential Equations: Modeling, Analysis and Numerical Approximation
  • Language: en
  • Pages: 395

Partial Differential Equations: Modeling, Analysis and Numerical Approximation

  • Type: Book
  • -
  • Published: 2016-02-11
  • -
  • Publisher: Birkhäuser

This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems.

Mathematical Analysis and Numerical Methods for Science and Technology
  • Language: en
  • Pages: 754

Mathematical Analysis and Numerical Methods for Science and Technology

299 G(t), and to obtain the corresponding properties of its Laplace transform (called the resolvent of - A) R(p) = (A + pl)-l , whose existence is linked with the spectrum of A. The functional space framework used will be, for simplicity, a Banach space(3). To summarise, we wish to extend definition (2) for bounded operators A, i.e. G(t) = exp( - tA) , to unbounded operators A over X, where X is now a Banach space. Plan of the Chapter We shall see in this chapter that this enterprise is possible, that it gives us in addition to what is demanded above, some supplementary information in a number of areas: - a new 'explicit' expression of the solution; - the regularity of the solution taking into account some conditions on the given data (u , u1,f etc ... ) with the notion of a strong solution; o - asymptotic properties of the solutions. In order to treat these problems we go through the following stages: in § 1, we shall study the principal properties of operators of semigroups {G(t)} acting in the space X, particularly the existence of an upper exponential bound (in t) of the norm of G(t). In §2, we shall study the functions u E X for which t --+ G(t)u is differentiable.

Mathematical Analysis and Numerical Methods for Science and Technology
  • Language: en
  • Pages: 506

Mathematical Analysis and Numerical Methods for Science and Technology

These six volumes--the result of a ten year collaboration between two distinguished international figures--compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. It is a comprehensive and up-to-date publication that presents the mathematical tools needed in applications of mathematics.

Mathematical Analysis and Numerical Methods for Science and Technology
  • Language: en
  • Pages: 734

Mathematical Analysis and Numerical Methods for Science and Technology

These 6 volumes -- the result of a 10 year collaboration between the authors, both distinguished international figures -- compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. The advent of high-speed computers has made it possible to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way.

Mathematical Analysis and Numerical Methods for Science and Technology
  • Language: en
  • Pages: 556

Mathematical Analysis and Numerical Methods for Science and Technology

The advent of high-speed computers has made it possible for the first time to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way. Every facet of technical and industrial activity has been affected by these developments. The objective of the present work is to compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form.