You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides the reader with basic tools to solve problems of electromagnetism in their natural functional frameworks thanks to modern mathematical methods: integral surface methods, and also semigroups, variational methods, etc., well adapted to a numerical approach.As examples of applications of these tools and concepts, we solve several fundamental problems of electromagnetism, stationary or time-dependent: scattering of an incident wave by an obstacle, bounded or not, by gratings; wave propagation in a waveguide, with junctions and cascades. We hope that mathematical notions will allow a better understanding of modelization in electromagnetism and emphasize the essential features related to the geometry and nature of materials.
These 6 volumes -- the result of a 10 year collaboration between the authors, both distinguished international figures -- compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. The advent of high-speed computers has made it possible to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way.
This proceedings volume originates from a conference held in Herrnhut in June 2013. It provides unique insights into the power of abstract methods and techniques in dealing successfully with numerous applications stemming from classical analysis and mathematical physics. The book features diverse topics in the area of operator semigroups, including partial differential equations, martingale and Hilbert transforms, Banach and von Neumann algebras, Schrödinger operators, maximal regularity and Fourier multipliers, interpolation, operator-theoretical problems (concerning generation, perturbation and dilation, for example), and various qualitative and quantitative Tauberian theorems with a focu...
Comprehensive and thorough, this monograph emphasizes the main role differential geometry and convex analysis play in the understanding of physical, chemical, and mechanical notions. Central focus is placed on specifying the agreement between the functional framework and its physical necessity and on making clear the intrinsic character of physical elements, independent from specific charts or frames. The book is divided into four sections, covering thermostructure, classical mechanics, fluid mechanics modelling, and behavior laws. An extensive appendix provides notations and definitions as well as brief explanation of integral manifolds, symplectic structure, and contact structure. Plenty of examples are provided throughout the book, and reviews of basic principles in differential geometry and convex analysis are presented as needed. This book is a useful resource for graduate students and researchers in the field.
The book presents the best articles presented by researchers, academicians and industrial experts in the International Conference on “Innovative Design and Development Practices in Aerospace and Automotive Engineering (I-DAD 2016)”. The book discusses new concept designs, analysis and manufacturing technologies, where more swing is for improved performance through specific and/or multifunctional linguistic design aspects to downsize the system, improve weight to strength ratio, fuel efficiency, better operational capability at room and elevated temperatures, reduced wear and tear, NVH aspects while balancing the challenges of beyond Euro IV/Barat Stage IV emission norms, Greenhouse effects and recyclable materials. The innovative methods discussed in the book will serve as a reference material for educational and research organizations, as well as industry, to take up challenging projects of mutual interest.
Bioluminescence tomography is a recent biomedical imaging technique which allows to study molecular and cellular activities in vivo. From a mathematical point of view, it is an ill-posed inverse source problem: the location and the intensity of a photon source inside an organism have to be determined, given the photon count on the organism's surface. To face the ill-posedness of this problem, a geometric regularization approach is introduced, analyzed and numerically verified in this book.
In inverse problems one wants to find some parameter of interest which is not directly observable by indirect measurement. These measurements are usually noisy while the mapping of measurement to parameter is typically illposed (that is unstable). Therefore one applies regularization techniques that balance these two factors to find a stable approximation of the sought for parameter. However, in order to bound the reconstruction error, one needs additional information on the true parameter, which is nowadays typically formulated in terms of variational source conditions. In this thesis, we develop a general strategy to verify these conditions based on smoothness of the true parameter and the illposedness of the problem; the latter will be characterized by exploiting structural similarities to stability estimates. Following this, we apply our strategy to verify variational source conditions for parameter identification problems, inverse scattering and electrical impedance tomography.
Philippe Bénilan was a most original and charismatic mathematician who had a deep and decisive impact on the theory of Nonlinear Evolution Equations. Dedicated to him, Nonlinear Evolution Equations and Related Topics contains research papers written by highly distinguished mathematicians. They are all related to Philippe Benilan's work and reflect the present state of this most active field. The contributions cover a wide range of nonlinear and linear equations.
This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems.