You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Engineering applications offer benefits and opportunities across a range of different industries and fields. By developing effective methods of analysis, results and solutions are produced with higher accuracy. Numerical and Analytical Solutions for Solving Nonlinear Equations in Heat Transfer is an innovative source of academic research on the optimized techniques for analyzing heat transfer equations and the application of these methods across various fields. Highlighting pertinent topics such as the differential transformation method, industrial applications, and the homotopy perturbation method, this book is ideally designed for engineers, researchers, graduate students, professionals, and academics interested in applying new mathematical techniques in engineering sciences.
This book is about magnetohydrodynamics, explaining how magnetic fields can induce currents within a moving conductive fluid, which in turn creates forces on the fluid and influences the magnetic field itself. The book explains its governing equations and discusses free, forced and mixed convection heat transfers of nanofluids. The models discussed in the book have applications in various fields, including mathematics, physics, biology, medicine, engineering, nanotechnology, and materials science. This book will be of use to professionals, researchers, scientists, policy makers, and students with a keen interest within this field. This book provides an understanding of the fundamentals of new numerical and analytical methods, acting as a remedy for the lack of convenient and integrated sources of information in this specific field of study.
Different aspects of metal forming, consisting of process, tools and design, are presented in this book. The chapters of this book include the state of art and analysis of the processes considering the materials characteristics. The processes of hydroforming, forging and forming of sandwich sheet are discussed. Also, a chapter on topography of tools, and another chapter on machine tools are presented. Design of a programmable metal forming press and methods for predicting forming limits of sheet metal are described.
In the present book, nanofluid heat and mass transfer in engineering problems are investigated. The use of additives in the base fluid like water or ethylene glycol is one of the techniques applied to augment heat transfer. Newly, innovative nanometer-sized particles have been dispersed in the base fluid in heat transfer fluids. The fluids containing the solid nanometer-sized particle dispersion are called "nanofluids." At first, nanofluid heat and mass transfer over a stretching sheet are provided with various boundary conditions. Problems faced for simulating nanofluids are reported. Also, thermophysical properties of various nanofluids are presented. Nanofluid flow and heat transfer in the presence of magnetic field are investigated. Furthermore, applications for electrical and biomedical engineering are provided. Besides, applications of nanofluid in internal combustion engine are provided.
Different numerical and analytical methods have been employed to find the solution of governing equations for nanofluid flow and heat transfer. Applications of Nanofluid Transportation and Heat Transfer Simulation provides emerging research exploring the theoretical and practical aspects and applications of heat and nanofluid transfer. With practical examples and proposed methodology, it features coverage on a broad range of topics such as nanoparticles, electric fields, and hydrothermal behavior, making it an ideal reference source for engineers, researchers, graduate students, professionals, and academics.
Digital Human Modeling and Medicine: The Digital Twin explores the body of knowledge and state-of-the-art in Digital Human Modeling (DHM) and its applications in medicine. DHM is the science of representing humans with their physical properties, characteristics and behaviors in computerized, virtual models. These models can be used standalone or integrated with other computerized object design systems to both design or study designs of medical devices or medical device products and their relationship with humans. They serve as fast and cost-efficient computer-based tools for the assessment of human functional systems and human-system interaction. This book provides an industry first introduc...
Media commentators have noted a rising public tolerance to the use of rude or offensive words in modern English. John Lydon’s obscene outburst on 'I’m a Celebrity...' only provoked a handful of complaints – a muted reaction compared to the furore following his use of the f-word on television twenty-eight years earlier. This timely and authoritative exploration of rudeness in modern English draws together experts from the academic world and the media – journalists, linguists, lexicographers and literary critics – and argues that rudeness is an important cultural phenomenon. Tightly edited with clear accessibly written pieces, the essays look at rudeness in: the media literature football chants street culture seaside postcards. With contributions from media figures including Tom Paulin and leading media-friendly linguists Deborah Cameron and Lynda Mugglestone, Rude Britannia raises concerns about linguistic and social codes, standards of decency, what is considered taboo in the public realm, constructions of bawdy, class, race, power and British identity.
This book presents the select proceedings of the 48th National Conference on Fluid Mechanics and Fluid Power (FMFP 2021) held at BITS Pilani in December 2021. It covers the topics such as fluid mechanics, measurement techniques in fluid flows, computational fluid dynamics, instability, transition and turbulence, fluid‐structure interaction, multiphase flows, micro- and nanoscale transport, bio-fluid mechanics, aerodynamics, turbomachinery, propulsion and power. The book will be useful for researchers and professionals interested in the broad field of mechanics.
Nanofluids are a new class of heat transfer fluids engineered by dispersing and stably suspending nanoparticles in traditional heat transfer fluids. Recently they have obtained global attention from the scientific community owing to their unique properties and significant applications in different engineering fields. Nanofluids: Preparation, Applications and Simulation Methods provides a comprehensive review of recent advances in this important research field. Different approaches for preparing some remarkable families of nanofluids such as aluminum oxide-based nanofluids, CuO/Cu-based nanofluids, carbon nanotubes/graphene-based nanofluids, ZnO-based nanofluids, Fe3O4-based nanofluids, and S...
Aromatherapy is a medical practice that uses aromatic compounds or essential oils to influence mood and health. Essential oils used in aromatherapy are created from a wide variety of medicinal plants, flowers, herbs, roots, and trees that are found all over the world and have significant, well-documented benefits on enhancing physical, emotional, and spiritual wellbeing. This book is a comprehensive reference on aromatic compounds present in essential oils and their therapeutic use. Starting from fundamentals of essential oil biosynthesis the book guides the reader through their basic biochemistry, toxicology, profiling, blending and clinical applications. The concluding chapters also present focused information about the therapeutic effects of essential oils on specific physiological systems, plant sources, skin treatment and cancer therapeutics. The combination of basic and applied knowledge will provide readers with all the necessary information for understanding how to develop preclinical formulations and standard clinical therapies with essential oils. This is an essential reference for anyone interested in aromatherapy and the science of essential oils.