You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The field of highly frustrated magnetism has developed considerably and expanded over the last 15 years. Issuing from canonical geometric frustration of interactions, it now extends over other aspects with many degrees of freedom such as magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. Its is thus shown here that the concept of frustration impacts on many other fields in physics than magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, encompassing solid-state chemistry, experimental and theoretical physics.
Nuclear Magnetic Resonance (NMR) has been a fundamental player in the studies of superconducting materials for many decades. This local probe technique allows for the study of the static electronic properties as well as of the low energy excitations of the electrons in the normal and the superconducting state. On that account it has also been widely applied to Fe-based superconductors from the very beginning of their discovery in February 2008. This dissertation comprises some of these very first NMR results, reflecting the unconventional nature of superconductivity and its strong link to magnetism in the investigated compounds LaO1–xFxFeAs and LiFeAs.
There is considerable interest in the intrinsically multiscale structure and dynamics of complex electronic oxides, especially since these materials include those of technological importance, such as colossal magnetoresistance manganites and cuprate high temperature superconductors. Current microscopies, such as diffuse X-ray and inelastic neutron scattering, electromagnetic and acoustic response, NMR and scanning tunneling microscope probes, have revealed static and dynamic multiscale patterns in charge positioning, lattice structure and magnetic orientation, that respond to both external stress and magnetic field. These self-organized patterns include charge and orbital ordering; stripes in strain/spin; and labyrinth-like conductance modulations. The materials exhibit nanoscale phase segregation and mesoscale inhomogeneous clustering, and their phase transitions can have a percolative character.This volume presents experimental and theoretical work on these exciting new developments in condensed matter physics and materials science.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
A COMPLETE, UP-TO-DATE RESOURCE OF INFORMATION ON MORE THAN 150 FLUORESCENT DYES AND PROBES Handbook of Fluorescent Dyes and Probes is the most comprehensive volume available on the subject, covering all the available dyes and probes known to date in the literature for uses in various fields. Top dye expert Dr. Ram Sabnis organizes the compounds alphabetically by the most commonly used chemical name. He presents an easy-to-use reference complete with novel ideas for breakthrough research in medical, biological, chemical, color, material, physical and related allied fields. The ease of use of the handbook is further enhanced by various appendixes provided at the end of the book to convenientl...
What can we learn from nature? The study of the physical, chemical and structural properties of well-known minerals in the geo- and biosphere creates new opportunities for innovative applications in technology, environment or medicine. This book highlights today’s research on outstanding minerals such as garnets used as components in all solid state batteries, delafossite formation during wastewater treatment, monazites for the immobilization of high level radioactive waste or hyroxylapatite as bioactive material for medical implant applications. Contents Part I: High-technology materials Lithium ion–conducting oxide garnets Olivine-type battery materials Natural and synthetic zeolites M...
High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their knowledge of this remarkable class of materials.
A survey of recent research in the fields of condensed matter physics and chemistry based on novel NMR and ESR techniques. Applications include quantum computing, metal nanoparticles, low dimensional magnets, fullerenes as atomic cages, superconductors, porous media, and laser assisted studies. The book is dedicated to Professor Robert Blinc, on the occasion of his seventieth birthday, in appreciation of his remarkable scientific accomplishments in the NMR of condensed matter.
Serving the needs of pigment cell biologists, cellular physiologists, developmental geneticists, researchers interested in melanoma and more, this new book showcases a blend of new technologies and new insights in the field of pigmantary genetics of mice, with comparative information on other animals. Graduate students can learn here the terminology and scope of the field, and animal fanciers can discover the genetics behind common color variants of mammals. The book is hailed for being written by four of the premier scientists in the field. These authors aim to present the molecular /cellular work in the context of phenotype and the interacting functions of genes that direct the development and function of one biological system. For other researchers, the depth of genetic knowledge on the pigmantary system makes it a valuable model for the study of other systems.