You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Molecular Beam Epitaxy (MBE): From Research to Mass Production, Second Edition, provides a comprehensive overview of the latest MBE research and applications in epitaxial growth, along with a detailed discussion and 'how to' on processing molecular or atomic beams that occur on the surface of a heated crystalline substrate in a vacuum. The techniques addressed in the book can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. It includes new semiconductor materials, new device structures that are commercially available, and many that are at the advanced research stage. This second edition covers the advances mad...
Traces the quest to use nanostructured media for novel and improved optoelectronic devices. Leading experts - among them Nobel laureate Zhores Alferov - write here about the fundamental concepts behind nano-optoelectronics, the material basis, physical phenomena, device physics and systems.
The ability to engineer the bandstructure and the wavefunction over length scales previously inaccessible to technology using artificially structured materials and nanolithography has led to a new class of electron semiconductor devices whose operation is controlled by quantum effects. These structures not only represent exciting tools for investigating new quantum phenomena in semiconductors, but also offer exciting opportunities for applications. This book gives the first comprehensive treatment of the physics of quantum electron devices. This interdisciplinary field, at the junction between material science, physics and technology, has witnessed an explosive growth in recent years. This volume presents a detailed coverage of the physics of the underlying phenomena, and their device and circuit applications, together with fabrication and growth technology.
Tremendous progress has been made in the last few years in the growth, doping and processing technologies of the wide bandgap semiconductors. As a result, this class of materials now holds significant promis for semiconductor electronics in a broad range of applications. The principal driver for the current revival of interest in III-V Nitrides is their potential use in high power, high temperature, high frequency and optical devices resistant to radiation damage. This book provides a wide number of optoelectronic applications of III-V nitrides and covers the entire process from growth to devices and applications making it essential reading for those working in the semiconductors or microelectronics. Broad review of optoelectronic applications of III-V nitrides
Nanotechnology Provides comprehensive coverage of the dominant technology of the 21st century Written by a truly international list of contributors.
Owing to new physical, technological, and device concepts of low-dimensionalelectronic systems, the physics and fabrication of quasi-zero, one- and two-dimensional systems are rapidly growing fields. The contributions presented in this volume cover results of nanostructure fabrication including recently developed techniques, for example, tunneling probe techniques and molecular beam epitaxy, quantum transport including the integer and fractional quantum Hall effect, optical and transport studies of the two-dimensional Wigner solid, phonon studies of low-dimensional systems, and Si/SiGe heterostructures and superlattices. To the readers new in the field this volume gives a comprehensive introduction and for the experts it is an update of their knowledge and a great help for decisions about future research activities.
The NATO Special Programme Panel on Condensed Systems of Low Dimensionality began its work in 1985 at a time of considerable activity in the field. The Panel has since funded many Advanced Research Workshops, Advanced Study Institutes, Cooperative Research Grants and Research Visits across the breadth of its remit, which stretches from self-organizing organic molecules to semiconductor structures having two, one and zero dimensions. The funded activities, especially the workshops, have allowed researchers from within NATO countries to exchange ideas and work together at a period of development of the field when such interactions are most valuable. Such timely support has undoubtedly assisted...
This Advanced Study Institute on the Electronic Properties of Multilayers and Low Dimensional Semiconductor Structures focussed on several of the most active areas in modern semiconductor physics. These included resonant tunnelling and superlattice phenomena and the topics of ballistic transport, quantised conductance and anomalous magnetoresistance effects in laterally gated two-dimensional electron systems. Although the main emphasis was on fundamental physics, a series of supporting lectures described the underlying technology (Molecular Beam Epitaxy, Metallo-Organic Chemical Vapour Deposition, Electron Beam Lithography and other advanced processing technologies). Actual and potential app...
Under certain conditions electrons in a semiconductor become much hotter than the surrounding crystal lattice. When this happens, Ohm's Law breaks down: current no longer increases linearly with voltage and may even decrease. Hot electrons have long been a challenging problem in condensed matter physics and remain important in semiconductor research. Recent advances in technology have led to semiconductors with submicron dimensions, where electrons can be confined to two (quantum well), one (quantum wire), or zero (quantum dot) dimensions. In these devices small voltages heat electrons rapidly, inducing complex nonlinear behavior; the study of hot electrons is central to their further develo...
This book focuses on novel bismuth-containing alloys and nanostructures, covering a wide range of materials from semiconductors, topological insulators, silica optical fibers and to multiferroic materials. It provides a timely overview of bismuth alloys and nanostructures, from material synthesis and physical properties to device applications and also includes the latest research findings. Bismuth is considered to be a sustainable and environmentally friendly element, and has received increasing attention in a variety of innovative research areas in recent years. The book is intended as a reference resource and textbook for graduate students and researchers working in these fields.