You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Advances in Space Environment Research - Volume I contains the proceedings of two international workshops, the World Space Environment Forum (WSEF2002) and the High Performance Computing in Space Environment Research (HPC2002), organized by the World Institute for Space Environment Research (WISER) from 22 July to 2 August 2002 in Adelaide, Australia. The articles in this volume review the state-of-the-art of the theoretical, computational and observational studies of the physical processes of Sun-Earth connections and Space Environment. They cover six topical areas: Sun/Heliosphere, Magnetosphere/Bow Shock, Ionosphere/Atmosphere, Space Weather/Space Climate, Space Plasma Physics/Astrophysics, and Complex/Intelligent Systems.
The first chapter describes the oldest method of communication between living systems in Nature, the chemical language. Plants, due to their lack of mobility, have developed the most sophisticated way of chemical communication. Despite that many examples involve this chemical communication process - allelopathy, there is still a lack of information about specific allelochemicals released into the environment, their purpose, as well as in-depth studies on the chemistry underground. These findings are critical to gain a better understanding of the role of these compounds and open up a wide range of possibilities and applications, especially in agriculture and phytomedicine. The most relevant a...
Apheresis refers to an extracorporeal therapy which aims at removing pathological constituents from the patients’ blood. Due to the development of new techniques as well as the discovery of novel autoimmune antibodies, it is increasingly recognized as an important therapeutic option for a variety of autoimmune-mediated neurological disorders, including multiple sclerosis, myasthenia gravis, autoimmune encephalitis, Guillain–Barré syndrome, and many others. Therapeutic plasma exchange (TPE) constitutes the standard method of apheresis for most indications, while immunoadsorption (IA) offers a more specific, low-risk alternative. Both methods aim at removing auto-antibodies from the blood. Evidence for most neurological diseases is still low. Interestingly, more recent developments suggest that apheresis is not limited to the removal of autoantibodies but may also be useful in neurodegenerative and possibly even in acute vascular disorders.
This book will provide an invaluable guide to epigenetics, one of the fastest moving fields in drug discovery, for medicinal chemists working in academia and in the pharmaceutical industry.
The book is about the seed development in the model and crop plants. Seed development is a key step of the plant life cycle that determines the nutrient value of seeds – the life for human civilization, growth, and development. The nutrient value of seeds is mainly due to storage reserve products such as carbohydrates, lipids (triacylglycerols), and proteins. The book primarily focuses on application of the 21st century high-throughput technologies transcriptomics, proteomics, metabolomics, and systems biology in near complete understanding of the various processes involved in seed development in different crop plants. The book reveals how such technologies have revolutionized our understanding of the multilayer processes and regulations involved therein by generating large-scale datasets. Accumulated datasets provide basic knowledge to develop integrated strategies to eventually improve the nutritional value of plant seed and crop yield, a critical goal in food security issues around the globe.
Many organisms have evolved the ability to enter into and revive from a dormant state. They can survive for long periods in this state (often even months to years), yet can become responsive again within minutes or hours. This is often, but not necessarily, associated with desiccation. Preserving one’s body and reviving it in future generations is a dream of mankind. To date, however, we have failed to learn how cells, tissues or entire organisms can be made dormant or be effectively revived at ambient temperatures. In this book studies on organisms, ranging from aquatic cyanobacteria that produce akinetes to hibernating mammals, are presented, and reveal common but also divergent physiological and molecular pathways for surviving in a dormant form or for tolerating harsh environments. Attempting to learn the functions associated with dormancy and how they are regulated is one of the great future challenges. Its relevance to the preservation of cells and tissues is one of the key concerns of this book.