You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This publication contains the papers presented at the 15th European Conference on Soil Mechanics and Geotechnical Engineering (ECSMGE), held in Athens, Greece. Considerable progress has been made in recent decades in understanding the engineering behavior of those hard soils and weak rocks that clearly fall into either the field of soil or of rock mechanics, and there have been important developments in design and construction methods to cope with them. Progress would be even more desirable, however, for those materials which fall into the ‘grey’ area between soils and rocks. They present particular challenges due to their diversity, the difficulties and problems arising in their identif...
279 4. 2. Basic formulation 280 4. 3. Variations on the theme 285 4. 4. C. S. Parameters 286 5. CONCLUSIONS 289 REFERENCES 290 CHAPTER 12 FINITE ELEMENT METHODS FOR FILLS AND EMBANKMENT DAMS D. J. NAYLOR 1. INTRODUCTION 291 2. NUMBER OF LAYERS - ACTUAL AND ANALYTICAL 292 3. DEFORMATION IN A RISING FILL 292 4. BASIC FINITE ELEMENT PROCEDURE 292 5. INTERPRETATION OF FINITE ELEMENT DIS PLACEMENTS - 1D CASE 294 6. NEW LAYER STIFFNESS REDUCTION 296 7. MODELLING COMPACTION 300 8. FINITE ELEMENT EFFECTIVE STRESS TECHNIQUES 302 8. 1. Undrained effective stress analysis 302 8. 2. Known pore pressure change analysis 305 9. FIRST FILLING AND OPERATION - GENERAL 306 10. LOADING DUE TO IMPOUNDING 308 10....
Computational Modeling of Multiphase Geomaterials discusses how numerical methods play a very important role in geotechnical engineering and in the related activity of computational geotechnics. It shows how numerical methods and constitutive modeling can help predict the behavior of geomaterials such as soil and rock. After presenting the fundamentals of continuum mechanics, the book explores recent advances in the use of modeling and numerical methods for multiphase geomaterial applications. The authors describe the constitutive modeling of soils for rate-dependent behavior, strain localization, multiphase theory, and applications in the context of large deformations. They also emphasize viscoplasticity and water–soil coupling. Drawing on the authors’ well-regarded work in the field, this book provides you with the knowledge and tools to tackle problems in geomechanics. It gives you a comprehensive understanding of how to apply continuum mechanics, constitutive modeling, finite element analysis, and numerical methods to predict the behavior of soil and rock.
The ground is one of the most highly variable of engineering materials. It is therefore not surprising that geotechnical designs depend on local site conditions and local engineering experience. Engineering practices, relating to investigation and design methods (site understanding) and to safety levels acceptable to society, will therefore vary between different regions. The challenge in geotechnical engineering is to make use of worldwide geotechnical experience, established over many years, to aid in the development and harmonization of geotechnical design codes. Given the significant uncertainties involved, empiricism and engineering judgment will undoubtedly always be an essential eleme...
The Bengt B Broms Symposium on Geotechnical Engineering was organised to pay tribute to Professor Broms for his outstanding contribution to the advancement of geotechnical engineering. A number of eminent geotechnical engineers and researchers were invited to contribute to this Symposium. This volume is a compilation of 27 invited papers presented at the Symposium, covering the various aspects of geotechnical engineering, with the main focus on pile foundations, excavation and retaining structure, and soil improvement.