You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, ma...
Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have parti...
Summary: This work combines selected papers from a July 2008 workshop held in Cetraro, Italy, with invited papers by international contributors. Material is in sections on algorithms and scheduling, architectures, GRID technologies, cloud technologies, information processing and applications, and HPC and GRID infrastructures for e-science. B&w maps, images, and screenshots are used to illustrate topics such as nondeterministic coordination using S-Net, cloud computing for on-demand grid resource provisioning, grid computing for financial applications, and the evolution of research and education networks and their essential role in modern science. There is no subject index. The book's readership includes computer scientists, IT engineers, and managers interested in the future development of grids, clouds, and large-scale computing. Gentzsch is affiliated with the DEISA Project and Open Grid Forum, Germany.
Studies two algorithms in detail: the ellipsoid method and the simultaneous diophantine approximation method.
This is a textbook about linear and integer linear optimization. There is a growing need in industries such as airline, trucking, and financial engineering to solve very large linear and integer linear optimization problems. Building these models requires uniquely trained individuals. Not only must they have a thorough understanding of the theory behind mathematical programming, they must have substantial knowledge of how to solve very large models in today's computing environment. The major goal of the book is to develop the theory of linear and integer linear optimization in a unified manner and then demonstrate how to use this theory in a modern computing environment to solve very large r...
This work is based on a set of lectures and invited papers presented at a meeting in Murcia, Spain, organized by the European Commission's Training and Mobility of Researchers (TMR) Programme. It contains information on the structure of representation theory of groups and algebras and on general ring theoretic methods related to the theory.
Recently, much attention has been paid to image processing with multiresolution and hierarchical structures such as pyramids and trees. This volume deals with recursive pyramids, which combine the advantages of available multiresolution structures and which are convenient both for global and local image processing. Recursive pyramids are based on regular hierarchical (recursive) structures containing data on image fragments of different sizes. Such an image representation technique enables the effective manipulation of pictorial information as well as the development of special hardware or data structures. The major aspects of this book are two original mathematical models of greyscale and b...
This volume contains 11 invited lectures and 42 communications presented at the 13th Conference on Mathematical Foundations of Computer Science, MFCS '88, held at Carlsbad, Czechoslovakia, August 29 - September 2, 1988. Most of the papers present material from the following four fields: - complexity theory, in particular structural complexity, - concurrency and parellelism, - formal language theory, - semantics. Other areas treated in the proceedings include functional programming, inductive syntactical synthesis, unification algorithms, relational databases and incremental attribute evaluation.
Studies on Graphs and Discrete Programming
A module M is called distributive if the lattice Lat(M) of all its submodules is distributive, i.e., Fn(G + H) = FnG + FnH for all submodules F,G, and H of the module M. A module M is called uniserial if all its submodules are comparable with respect to inclusion, i.e., the lattice Lat(M) is a chain. Any direct sum of distributive (resp. uniserial) modules is called a semidistributive (resp. serial) module. The class of distributive (resp. semidistributive) modules properly cont.ains the class ofall uniserial (resp. serial) modules. In particular, all simple (resp. semisimple) modules are distributive (resp. semidistributive). All strongly regular rings (for example, all factor rings of direct products of division rings and all commutative regular rings) are distributive; all valuation rings in division rings and all commutative Dedekind rings (e.g., rings of integral algebraic numbers or commutative principal ideal rings) are distributive. A module is called a Bezout module or a locally cyclic module ifevery finitely generated submodule is cyclic. If all maximal right ideals of a ring A are ideals (e.g., if A is commutative), then all Bezout A-modules are distributive.