You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents an extensive variety of multi-objective problems across diverse disciplines, along with statistical solutions using multi-objective evolutionary algorithms (MOEAs). The topics discussed serve to promote a wider understanding as well as the use of MOEAs, the aim being to find good solutions for high-dimensional real-world design applications. The book contains a large collection of MOEA applications from many researchers, and thus provides the practitioner with detailed algorithmic direction to achieve good results in their selected problem domain.
This book introduces advanced or emerging technologies for conversion of wastes into a variety of high-value chemicals and materials. Energy and resources can be recovered from various residential, industrial and commercial wastes, such as municipal wastewater and sludge, e-waste, waste plastics and resins, crop residues, forestry residues and lignin. Advanced waste-to-resource and energy technologies like pyrolysis, hydrothermal liquefaction, fractionation, de-polymerization, gasification and carbonization are also introduced. The book serves as an essential guide to dealing with various types of wastes and the methods of disposal, recovery, recycling and re-use. As such it is a valuable resource for a wide readership, including graduate students, academic researchers, industrial researchers and practitioners in chemical engineering, waste management, waste to energy and resources conversion and biorefinery.
This book offers several solutions or approaches in solving mass transfer problems for different practical chemical engineering applications: measurements of the diffusion coefficients, estimation of the mass transfer coefficients, mass transfer limitation in separation processes like drying, extractions, absorption, membrane processes, mass transfer in the microbial fuel cell design, and problems of the mass transfer coupled with the heterogeneous combustion. I believe this book can provide its readers with interesting ideas and inspirations or direct solutions of their particular problems.
The book on Physico-Chemical Treatment of Wastewater and Resource Recovery provides an efficient and low-cost solution for remediation of wastewater. This book focuses on physico-chemical treatment via advanced oxidation process, adsorption, its management and recovery of valuable chemicals. It discusses treatment and recovery process for the range of pollutants including BTX, PCB, PCDDs, proteins, phenols, antibiotics, complex organic compounds and metals. The occurrence of persistent pollutants poses deleterious effects on human and environmental health. Simple solutions for recovery of valuable chemicals and water during physico-chemical treatment of wastewater are discussed extensively. This book provides necessary knowledge and experimental studies on emerging physico-chemical processes for reducing water pollution and resource recovery.
This book discusses recent advances in the photocatalytic and electrophotocatalytic applications of titanium dioxide nanocomposites containing polymers and other components. These materials possess photocatalytic, virucidal and antimicrobial efficacy and water and air cleaning abilities against eco-toxicants, and allow water splitting for the generation of chemical fuels. The book considers the ability of nanocomposites’ components to reinforce titania functionality in photocatalysis and photoelectrocatalysis, and presents an overview of their occurrence in nature, their thermodynamic properties, and their toxicity. The volume will be of interest to chemists and material science specialists and practitioners, as well as any reader interested in the recent scientific achievements for green and sustainable development.
This book focuses on the biologically derived adsorbent with numerous applications in wastewater treatment, metal recovery, biosensor development, and so forth. It initiates with the description of biological sources of biosorbents followed by applications of biosorbents, biosorption isotherms, assessment of biosorbents with various tools, pretreatment of biosorbents, and its mode of action. Some less explored areas like separation of radionuclides, biosorption of volatile organic compounds, and animal-based biosorbents are also explained. Features: Focuses on fundamentals, characteristics of flora and fauna-mediated biosorbents used extensively Describes entire aspects of tools and techniques related to assessment and monitoring of biosorbents Includes adsorption kinetics, adsorption isotherm, and mechanism of action of biosorbents Covers advancements in pretreatment methods to enhance the adsorption process of biosorbents Reviews recent applications which include heavy metal removal, dye remediation, and separation of radionuclides and nano-biosorbents This book is aimed at graduate students and researchers in bioprocess engineering, microbiology, and biotechnology.
None
This book covers pharmaceutical residue dispersion in the aquatic environment and its toxic effect on living organisms. It discusses conventional and advanced remediation technologies such as the use of biomaterials for the sequestration of contaminants, nanotechnology, and phytoremediation. The book includes topics such as the removal of pharmaceutical and personal care product residues from water bodies, green chemistry, and legal regimens for pharmaceuticals in the aquatic environment. It also covers the application of modified biochar in pharmaceutical removal. FEATURES Explores the management of the environment through green chemistry Describes phytoremediation technology for decontamination of pharmaceutical-laden water and wastewater Covers the detection methods and quantification of pharmaceutical residues in various contaminated sources Discusses ecotoxicological aspects and risk assessment of pharmaceuticals in the aquatic environment Reviews degradation and treatment technologies including nanotechnology, biomaterials, and biochar This book is meant for pharmaceutical, toxicology, and environmental science industry experts and researchers.
Most of the time, industrial wastes contain recoverable resources that would be useful in other applications. For example, greywater have enough nutrient to support the growth of microalgal biomass that are useful for biofuel production. Similarly, solid waste generated in metal extraction industries often contain high concentration of other metals that could be extracted using various processes. This book presents a critical overview on the current nanotechnologies that are being utilized for extraction of valuable resources from various industrial and domestic wastes. This book presents research, reviews, and case studies on the extraction of metal, organic compounds, energy and nutrients from waste through nanotechnological interventions.