You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
There has been a considerable progress made during the recent past on mathematical techniques for studying dynamical systems that arise in science and engineering. This progress has been, to a large extent, due to our increasing ability to mathematically model physical processes and to analyze and solve them, both analytically and numerically. With its eleven chapters, this book brings together important contributions from renowned international researchers to provide an excellent survey of recent advances in dynamical systems theory and applications. The first section consists of seven chapters that focus on analytical techniques, while the next section is composed of four chapters that center on computational techniques.
This book presents recent studies of acoustic wave propagation through different media including the atmosphere, Earth's subsurface, complex dusty plasmas, porous materials, and flexible structures. Mathematical models of the underlying physical phenomena are introduced and studied in detail. With its seven chapters, the book brings together important contributions from renowned international researchers to provide an excellent survey of recent computational and experimental studies of acoustic waves. The first section consists of four chapters that focus on computational studies, while the next section is composed of three chapters that center on experimental studies.
Structural testing and assessment, process monitoring, and material characterization are three broad application areas of acoustic emission (AE) techniques. Quantitative and qualitative characteristics of AE waves have been studied widely in the literature. This book reviews major research developments in the application of AE in numerous engineering fields. It brings together important contributions from renowned international researchers to provide an excellent survey of new perspectives and paradigms of AE. In particular, this book presents applications of AE in cracking and damage assessment in metal beams, asphalt pavements, and composite materials as well as studying noise mitigation in wind turbines and cylindrical shells.
This book focuses on several key aspects of nonlinear systems including dynamic modeling, state estimation, and stability analysis. It is intended to provide a wide range of readers in applied mathematics and various engineering disciplines an excellent survey of recent studies of nonlinear systems. With its thirteen chapters, the book brings together important contributions from renowned international researchers to provide an excellent survey of recent studies of nonlinear systems. The first section consists of eight chapters that focus on nonlinear dynamic modeling and analysis techniques, while the next section is composed of five chapters that center on state estimation methods and stability analysis for nonlinear systems.
This book presents recent studies of unmanned robotic systems and their applications. With its five chapters, the book brings together important contributions from renowned international researchers. Unmanned autonomous robots are ideal candidates for applications such as rescue missions, especially in areas that are difficult to access. Swarm robotics (multiple robots working together) is another exciting application of the unmanned robotics systems, for example, coordinated search by an interconnected group of moving robots for the purpose of finding a source of hazardous emissions. These robots can behave like individuals working in a group without a centralized control.
Nonholonomic Motion Planning grew out of the workshop that took place at the 1991 IEEE International Conference on Robotics and Automation. It consists of contributed chapters representing new developments in this area. Contributors to the book include robotics engineers, nonlinear control experts, differential geometers and applied mathematicians. Nonholonomic Motion Planning is arranged into three chapter groups: Controllability: one of the key mathematical tools needed to study nonholonomic motion. Motion Planning for Mobile Robots: in this section the papers are focused on problems with nonholonomic velocity constraints as well as constraints on the generalized coordinates. Falling Cats,...
This book presents methods to study the controllability and the stabilization of nonlinear control systems in finite and infinite dimensions. The emphasis is put on specific phenomena due to nonlinearities. In particular, many examples are given where nonlinearities turn out to be essential to get controllability or stabilization. Various methods are presented to study the controllability or to construct stabilizing feedback laws. The power of these methods is illustrated by numerous examples coming from such areas as celestial mechanics, fluid mechanics, and quantum mechanics. The book is addressed to graduate students in mathematics or control theory, and to mathematicians or engineers with an interest in nonlinear control systems governed by ordinary or partial differential equations.
At publication, The Control Handbook immediately became the definitive resource that engineers working with modern control systems required. Among its many accolades, that first edition was cited by the AAP as the Best Engineering Handbook of 1996. Now, 15 years later, William Levine has once again compiled the most comprehensive and authoritative resource on control engineering. He has fully reorganized the text to reflect the technical advances achieved since the last edition and has expanded its contents to include the multidisciplinary perspective that is making control engineering a critical component in so many fields. Now expanded from one to three volumes, The Control Handbook, Secon...
Flexible structures arise in significant important areas of application, such as robotics, large space structures, and antenna control. Difficulties related to sensing and identification hamper control of such systems. These problems require collaboration between mathematicians and engineers. To promote such collaboration, the Fields Institute sponsored a three-day workshop entitled ``Problems in Sensing, Identification, and Control of Flexible Structures'' in June 1992. This volume contains papers presented at the workshop. Topics range from theoretical research on the well-posedness of systems, to experimental implementations of various controllers. A number of controller design techniques are discussed and compared, and there are several papers on modelling the complex dynamics of flexible structures. This book is a useful resource to control theorists, engineers, and mathematicians interested in this important field of research.
This book focuses on the applications of robust and adaptive control approaches to practical systems. The proposed control systems hold two important features: (1) The system is robust with the variation in plant parameters and disturbances (2) The system adapts to parametric uncertainties even in the unknown plant structure by self-training and self-estimating the unknown factors. The various kinds of robust adaptive controls represented in this book are composed of sliding mode control, model-reference adaptive control, gain-scheduling, H-infinity, model-predictive control, fuzzy logic, neural networks, machine learning, and so on. The control objects are very abundant, from cranes, aircrafts, and wind turbines to automobile, medical and sport machines, combustion engines, and electrical machines.