You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Classical planning is the problem of finding a sequence of actions for achieving a goal from an initial state assuming that actions have deterministic effects. The most effective approach for finding such plans is based on heuristic search guided by heuristics extracted automatically from the problem representation. In this thesis, we introduce alternative approaches for performing inference over the structure of planning problems that do not appeal to heuristic functions, nor to reductions to other formalisms such as SAT or CSP. We show that many of the standard benchmark domains can be solved with almost no search or a polynomially bounded amount of search, once the structure of planning problems is taken into account. In certain cases we can characterize this structure in terms of a novel width parameter for classical planning.
Planning is the branch of Artificial Intelligence (AI) that seeks to automate reasoning about plans, most importantly the reasoning that goes into formulating a plan to achieve a given goal in a given situation. AI planning is model-based: a planning system takes as input a description (or model) of the initial situation, the actions available to change it, and the goal condition to output a plan composed of those actions that will accomplish the goal when executed from the initial situation. The Planning Domain Definition Language (PDDL) is a formal knowledge representation language designed to express planning models. Developed by the planning research community as a means of facilitating ...
Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October 2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier venue for presenting AI research in Europe, and this annual conference has become the place for researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI, and to demonstrat...
Automated planning is known to be computationally hard in the general case. Propositional planning is PSPACE-complete and first-order planning is undecidable. One method for analyzing the computational complexity of planning is to study restricted subsets of planning instances, with the aim of differentiating instances with varying complexity. We use this methodology for studying the computational complexity of planning. Finding new tractable (i.e. polynomial-time solvable) problems has been a particularly important goal for researchers in the area. The reason behind this is not only to differentiate between easy and hard planning instances, but also to use polynomial-time solvable instances...
This book constitutes the proceedings of the 24th International Conference on Principles and Practice of Constraint Programming, CP 2018, held in Lille, France, in August 2018.The 41 full and 9 short papers presented in this volume were carefully reviewed and selected from 114 submissions. They deal with all aspects of computing with constraints including theory, algorithms, environments, languages, models, systems, and applications such as decision making, resource allocation, scheduling, configuration, and planning. The papers were organized according to the following topics/tracks: main technical track; applications track; CP and data science; CP and music; CP and operations research; CP, optimization and power system management; multiagent and parallel CP; and testing and verification.
Planning is a crucial skill for any autonomous agent, be it a physically embedded agent, such as a robot, or a purely simulated software agent. For this reason, planning, as a central research area of artificial intelligence from its beginnings, has gained even more attention and importance recently. After giving a general introduction to AI planning, the book describes and carefully evaluates the algorithmic techniques used in fast-forward planning systems (FF), demonstrating their excellent performance in many wellknown benchmark domains. In advance, an original and detailed investigation identifies the main patterns of structure which cause the performance of FF, categorizing planning domains in a taxonomy of different classes with respect to their aptitude for being solved by heuristic approaches, such as FF. As shown, the majority of the planning benchmark domains lie in classes which are easy to solve.
Artificial Intelligence continues to be one of the most exciting and fast-developing fields of computer science. This book presents the 177 long papers and 123 short papers accepted for ECAI 2016, the latest edition of the biennial European Conference on Artificial Intelligence, Europe’s premier venue for presenting scientific results in AI. The conference was held in The Hague, the Netherlands, from August 29 to September 2, 2016. ECAI 2016 also incorporated the conference on Prestigious Applications of Intelligent Systems (PAIS) 2016, and the Starting AI Researcher Symposium (STAIRS). The papers from PAIS are included in this volume; the papers from STAIRS are published in a separate volume in the Frontiers in Artificial Intelligence and Applications (FAIA) series. Organized by the European Association for Artificial Intelligence (EurAI) and the Benelux Association for Artificial Intelligence (BNVKI), the ECAI conference provides an opportunity for researchers to present and hear about the very best research in contemporary AI. This proceedings will be of interest to all those seeking an overview of the very latest innovations and developments in this field.
This book constitutes the thoroughly refereed proceedings of the 30th Annual German Conference on Artificial Intelligence, KI 2007, held in Osnabrück, Germany, September 2007. The papers are organized in topical sections on cognition and emotion, semantic Web, analogy, natural language, reasoning, ontologies, spatio-temporal reasoning, machine learning, spatial reasoning, robot learning, classical AI problems, and agents.
None