Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Asymptotic Methods in the Theory of Gaussian Processes and Fields
  • Language: en
  • Pages: 222

Asymptotic Methods in the Theory of Gaussian Processes and Fields

This book is devoted to a systematic analysis of asymptotic behavior of distributions of various typical functionals of Gaussian random variables and fields. The text begins with an extended introduction, which explains fundamental ideas and sketches the basic methods fully presented later in the book. Good approximate formulas and sharp estimates of the remainders are obtained for a large class of Gaussian and similar processes. The author devotes special attention to the development of asymptotic analysis methods, emphasizing the method of comparison, the double-sum method and the method of moments. The author has added an extended introduction and has significantly revised the text for this translation, particularly the material on the double-sum method.

Lie Groups
  • Language: en
  • Pages: 532

Lie Groups

This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition. For compact Lie groups, the book covers the Peter–Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, r...

Lie Groups I
  • Language: en
  • Pages: 266

Lie Groups I

Presents a wide range of problems connected with rational approximations of numbers and analytic functions; these problems touch on many topics in contemporary analysis, such as analytic functions, orthogonal polynomials, spectral theory of operators, and potential theory.

Adams Memorial Symposium on Algebraic Topology: Volume 1
  • Language: en
  • Pages: 320

Adams Memorial Symposium on Algebraic Topology: Volume 1

Contains a combination of selected papers given in honour of John Frank Adams which illustrate the profound influence that he had on algebraic topology.

Infinite-Dimensional Lie Groups
  • Language: en
  • Pages: 434

Infinite-Dimensional Lie Groups

This book develops, from the viewpoint of abstract group theory, a general theory of infinite-dimensional Lie groups involving the implicit function theorem and the Frobenius theorem. Omori treats as infinite-dimensional Lie groups all the real, primitive, infinite transformation groups studied by E. Cartan. The book discusses several noncommutative algebras such as Weyl algebras and algebras of quantum groups and their automorphism groups. The notion of a noncommutative manifold is described, and the deformation quantization of certain algebras is discussed from the viewpoint of Lie algebras. This edition is a revised version of the book of the same title published in Japanese in 1979.

Modern Classical Homotopy Theory
  • Language: en
  • Pages: 862

Modern Classical Homotopy Theory

The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally pre...

Probability Theory
  • Language: en
  • Pages: 362

Probability Theory

This book of problems is intended for students in pure and applied mathematics. There are problems in traditional areas of probability theory and problems in the theory of stochastic processes, which has wide applications in the theory of automatic control, queuing and reliability theories, and in many other modern science and engineering fields. Answers to most of the problems are given, and the book provides hints and solutions for more complicated problems.

Climate Change Adaptation from Geotechnical Perspectives
  • Language: en
  • Pages: 439

Climate Change Adaptation from Geotechnical Perspectives

None

Recent Developments in Algebraic Geometry
  • Language: en
  • Pages: 368

Recent Developments in Algebraic Geometry

Written in celebration of Miles Reid's 70th birthday, this illuminating volume contains 11 papers by leading mathematicians in and around algebraic geometry, broadly related to the themes and interests of Reid's varied career. Just as in Reid's own scientific output, some of the papers give comprehensive accounts of the state of the art of foundational matters, while others give expositions of subject areas or techniques in concrete terms. Reid has been one of the major expositors of algebraic geometry and a great influence on many in this field – this book hopes to inspire a new generation of graduate students and researchers in his tradition.

Modern Spherical Functions
  • Language: en
  • Pages: 286

Modern Spherical Functions

This book presents an exposition of spherical functions on compact symmetric spaces, from the viewpoint of Cartan-Selberg. Representation theory, invariant differential operators, and invariant integral operators play an important role in the exposition. The author treats compact symmetric pairs, spherical representations for compact symmetric pairs, the fundamental groups of compact symmetric spaces, and the radial part of an invariant differential operator. Also explored are the classical results for spheres and complex projective spaces and the relation between spherical functions and harmonic polynomials. This book is suitable as a graduate textbook.