You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book familiarizes readers with fundamental concepts and issues related to computer vision and major approaches that address them. The focus of the book is on image acquisition and image formation models, radiometric models of image formation, image formation in the camera, image processing concepts, concept of feature extraction and feature selection for pattern classification/recognition, and advanced concepts like object classification, object tracking, image-based rendering, and image registration. Intended to be a companion to a typical teaching course on computer vision, the book takes a problem-solving approach.
The book familiarizes readers with fundamental concepts and issues related to computer vision and major approaches that address them. The focus of the book is on image acquisition and image formation models, radiometric models of image formation, image formation in the camera, image processing concepts, concept of feature extraction and feature selection for pattern classification/recognition, and advanced concepts like object classification, object tracking, image-based rendering, and image registration. Intended to be a companion to a typical teaching course on computer vision, the book takes a problem-solving approach.
The two-volume set of LNCS 11941 and 11942 constitutes the refereed proceedings of the 8th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2019, held in Tezpur, India, in December 2019. The 131 revised full papers presented were carefully reviewed and selected from 341 submissions. They are organized in topical sections named: Pattern Recognition; Machine Learning; Deep Learning; Soft and Evolutionary Computing; Image Processing; Medical Image Processing; Bioinformatics and Biomedical Signal Processing; Information Retrieval; Remote Sensing; Signal and Video Processing; and Smart and Intelligent Sensors.
The book covers the most recent developments in machine learning, signal analysis, and their applications. It covers the topics of machine intelligence such as: deep learning, soft computing approaches, support vector machines (SVMs), least square SVMs (LSSVMs) and their variants; and covers the topics of signal analysis such as: biomedical signals including electroencephalogram (EEG), magnetoencephalography (MEG), electrocardiogram (ECG) and electromyogram (EMG) as well as other signals such as speech signals, communication signals, vibration signals, image, and video. Further, it analyzes normal and abnormal categories of real-world signals, for example normal and epileptic EEG signals using numerous classification techniques. The book is envisioned for researchers and graduate students in Computer Science and Engineering, Electrical Engineering, Applied Mathematics, and Biomedical Signal Processing.
This book constitutes the refereed proceedings of the 5th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2013, held in Kolkata, India in December 2013. The 101 revised papers presented together with 9 invited talks were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on pattern recognition; machine learning; image processing; speech and video processing; medical imaging; document image processing; soft computing; bioinformatics and computational biology; and social media mining.
The aim of this work is the development of a Radar system for consumer applications. It is capable of tracking multiple people in a room and offers a touchless human-machine interface for purposes that range from entertainment to hygiene.
The Complete Beginner’s Guide to Understanding and Building Machine Learning Systems with Python Machine Learning with Python for Everyone will help you master the processes, patterns, and strategies you need to build effective learning systems, even if you’re an absolute beginner. If you can write some Python code, this book is for you, no matter how little college-level math you know. Principal instructor Mark E. Fenner relies on plain-English stories, pictures, and Python examples to communicate the ideas of machine learning. Mark begins by discussing machine learning and what it can do; introducing key mathematical and computational topics in an approachable manner; and walking you t...
This book presents advances in matrix and tensor data processing in the domain of signal, image and information processing. The theoretical mathematical approaches are discusses in the context of potential applications in sensor and cognitive systems engineering. The topics and application include Information Geometry, Differential Geometry of structured Matrix, Positive Definite Matrix, Covariance Matrix, Sensors (Electromagnetic Fields, Acoustic sensors) and Applications in Cognitive systems, in particular Data Mining.
Revised and updated to reflect new technologies in the field, the fourth edition of this popular text takes an in-depth look at the social costs and moral problems that have emerged by the ever expanding use of the Internet, and offers up-to-date legal and philosophical examinations of these issues. It focuses heavily on content control, free speech, intellectual property, and security while delving into new areas of blogging and social networking. Case studies throughout discuss real-world events and include coverage of numerous hot topics. In the process of exploring current issues, it identifies legal disputes that will likely set the standard for future cases.