You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This self-contained introductorytext on the behavior of learningautomata focuses on howa sequential decision-makerwith a finite number of choiceswould respond in a random environment. A must for all studentsof stochastic algorithms, this treatment is the workof two well-known scientists, one of whom provides a newIntroduction.Reprint of the Prentice-Hall, Inc, Englewood Cliffs, NewJersey, 1989 edition.
This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existi...
To date, stochastic local search (SLS) algorithms are among the standard methods for solving hard combinatorial problems from various areas of Artificial Intelligence and Operations Research. Some of the most successful and powerful algorithms for prominent problems like SAT, CSP, or TSP are based on stochastic local search. This work investigates various aspects of SLS algorithms; in particular, it focusses on modelling these algorithms, empirically evaluating their performance, characterising and improving their behaviour, and understanding the factors which influence their efficiency. These issues are studied for the SAT problem in propositional logic as a primary application domain. SAT has the advantage of being conceptually very simple, which facilitates the design, implementation, and presentation of algorithms as well as their analysis. However, most of the methodology generalises easily to other combinatorial problems like CSP. This Ph.D. thesis won the Best Dissertation Award 1999 (Dissertationspreis) of the German Informatics Society (Gesellschaft fur Informatik).
This self-contained introductory text on the behavior of learning automata focuses on how a sequential decision-maker with a finite number of choices responds in a random environment. Topics include fixed structure automata, variable structure stochastic automata, convergence, 0 and S models, nonstationary environments, interconnected automata and games, and applications of learning automata. A must for all students of stochastic algorithms, this treatment is the work of two well-known scientists and is suitable for a one-semester graduate course in automata theory and stochastic algorithms. This volume also provides a fine guide for independent study and a reference for students and professionals in operations research, computer science, artificial intelligence, and robotics. The authors have provided a new preface for this edition.
Techniques from artificial intelligence, control theory, operations research, and the decision sciences are invoked in this text/reference devoted to the design of complex systems for applications in robotics, automated manufacturing, and time-critical decision support systems. Annotation copyri Bo
Auf der Grundlage individueller Wahrnehmungen und darauf basierender Handlungsentscheidungen entwickelt Christian Langer ein theoriegeleitetes Modell, das er in einer computergestützten Multiagentensimulation implementiert und für Experimente zu individuellen und organisationalen Lern- und Ordnungsprozessen einsetzt.
None