You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Aimed at the senior undergraduate and graduate level, this textbook fills the gap between general introductory texts offering little detail and very technical, advanced books written for mathematicians and theorists rather than experimentalists in the field. The result is a concise course in atmospheric radiative processes, tailored for one semester. The authors are accomplished researchers who know how to reach their intended audience and provide here the content needed to understand climate warming and remote sensing for pollution measurement. They also include supplementary reading for planet scientists and problems. Equally suitable reading for geophysicists, physical chemists, astronomers, environmental chemists and spectroscopists. A solutions manual for lecturers will be provided on www.wiley-vch.de/supplements.
This first comprehensive review of airborne measurement principles covers all atmospheric components and surface parameters. It describes the common techniques to characterize aerosol particles and cloud/precipitation elements, while also explaining radiation quantities and pertinent hyperspectral and active remote sensing measurement techniques along the way. As a result, the major principles of operation are introduced and exemplified using specific instruments, treating both classic and emerging measurement techniques. The two editors head an international community of eminent scientists, all of them accepted and experienced specialists in their field, who help readers to understand specific problems related to airborne research, such as immanent uncertainties and limitations. They also provide guidance on the suitability of instruments to measure certain parameters and to select the correct type of device. While primarily intended for climate, geophysical and atmospheric researchers, its relevance to solar system objects makes this work equally appealing to astronomers studying atmospheres of solar system bodies with telescopes and space probes.
What do the movements of molecules and the migration of humans have in common? How does the functionality of our brain tissue resemble the flow of traffic in New York City? How can understanding the spread of ideas, rumors, and languages help us tackle the spread a pandemic? This book provides an illuminating look into these seemingly disparate topics by exploring and expertly communicating the fundamental laws that govern the spreading and diffusion of objects. A collection of leading scientists in disciplines as diverse as epidemiology, linguistics, mathematics, and physics discuss various spreading phenomena relevant to their own fields, revealing astonishing similarities and correlations...
This book reviews the spaceborne and airborne remote sensing of clouds including cloud lidar and radar data analysis, snow and soil reflectance spectroscopy, and single light scattering by nonspherical scatterers. Providing deep insights into the latest technologies, it is a valuable resource for scientists and postgraduate students alike.
Diverse driving forces, processes and actors are responsible for different trends in the development of megacities and large urban areas. Under the dynamics of global change, megacities are themselves changing: On the one hand they are prone to increasing socio-economic vulnerability due to pronounced poverty, socio-spatial and political fragmentation, sometimes with extreme forms of segregation, disparities and conflicts. On the other hand megacities offer positive potential for global transformation, e.g. minimisation of space consumption, highly effective use of resources, efficient disaster prevention and health care options – if good strategies were developed. At present in many megac...
This practical handbook provides a clearly structured, concise and comprehensive account of the huge variety of atmospheric and related measurements relevant to meteorologists and for the purpose of weather forecasting and climate research, but also to the practitioner in the wider field of environmental physics and ecology. The Springer Handbook of Atmospheric Measurements is divided into six parts: The first part offers instructive descriptions of the basics of atmospheric measurements and the multitude of their influencing factors, fundamentals of quality control and standardization, as well as equations and tables of atmospheric, water, and soil quantities. The subsequent parts present c...
This book experimentally investigates the angular light scattering properties of three atmospherically relevant particles: ice crystals, dust particles and secondary organic aerosol particles. Key optical quantities under examination are the near-backscattering depolarisation properties and the angular light scattering function. The main question is how these parameters are related to the particle microphysical properties, such as particle size and complexity.
This book presents current knowledge on chemistry and physics of Arctic atmosphere. Special attention is given to studies of the Arctic haze phenomenon, Arctic tropospheric clouds, Arctic fog, polar stratospheric and mesospheric clouds, atmospheric dynamics, thermodynamics and radiative transfer as related to the polar environment. The atmosphere-cryosphere feedbacks and atmospheric remote sensing techniques are presented in detail. The problems of climate change in the Arctic are also addressed.
Energy Balance Climate Models Written by renowned experts in the field, this first book to focus exclusively on energy balance climate models provides a concise overview of the topic. It covers all major aspects, from the simplest zero-dimensional models, proceeding to horizontally and vertically resolved models. The text begins with global average models, which are explored in terms of their elementary forms yielding the global average temperature, right up to the incorporation of feedback mechanisms and some analytical properties of interest. The eff ect of stochastic forcing is then used to introduce natural variability in the models before turning to the concept of stability theory. Othe...
The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized according to measurement problem, the Electromagnetic, Optical, Radiation, Chemical, and Biomedical Meas...