You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Bioweathering is the dissolution of rocks and mineral substrates carried out by microorganisms along with mechanical and chemical processes. The application of bacteria in biomining is a biotechnological approach for the extraction and recovery of metals from ores. Microbes interact with minerals as a strategy to colonize and exploit habitats where the environmental parameters disadvantage other microorganisms and they demonstrate the capacity to scavenge critical elements with low bioavailability, such as iron and phosphorus. There is an ongoing need to improve soil fertility and crop production, particularly in dry places, to remediate toxic soils, and clean stone artworks and structures. A more complete understanding of the ecology of mineral weathering processes mediated by the microbiome may provide a significant opportunity for researchers to develop novel solutions to developing challenges in agriculture, the environment, and industry.
Today, the agriculture industry is confronted with simultaneous issues of how to fully embrace mass production of safer food in terms of both quality and quantity. Most industries are concerned with avoiding significant levels of soil pollution and environmental threats as a result of the excessive and harmful use of synthetic products on crops. Therefore, there is a need to adopt sustainable technological innovations that can ensure the sustainability of agricultural production systems. Microbial Biostimulants for Sustainable Agriculture and Environmental Bioremediation discusses the benefits, challenges, and practical applications of eco-friendly biotechnological techniques using biostimul...
The future of agriculture strongly depends on our ability to enhance productivity without sacrificing long-term production potential. An ecologically and economically sustainable strategy is the application of microorganisms, such as the diverse bacterial species of plant growth promoting bacteria (PGPB). The use of these bio-resources for the enhancement of crop productivity is gaining worldwide importance. "Bacteria in Agrobiology: Stress Management" covers the major aspects on PGPR in amelioration of both abiotic and biotic stresses. PGPR mediated in priming of plant defense reactions, nutrient availability and management in saline and cold environment, hormonal signaling, ACC deaminase and its role in ethylene regulation under harsh conditions are suitably described.
Sustainable Agriculture under Drought Stress: Integrated Soil, Water and Nutrient Management seamlessly blends cutting-edge research with practical applications, offering a unique perspective on tackling this urgent challenge. Through a multidisciplinary lens, this book provides a cohesive and comprehensive understanding of both the current landscape and future prospects. Readers will find this book equips them with the knowledge and strategies required to manage soil nutrients and water effectively, ensuring the health of both soil and plants, especially in arid and semi-arid regions, where solutions are urgently needed. This book offers actionable insights into mitigating the impacts of climate change on agricultural systems, making it essential reading for anyone invested in sustainable land management and food security. - Clarifies mechanisms and proposes solutions for enhancing soil health and fertility, irrigation management, and crop production in drought-stressed environments - Presents a diverse array of options for responding to drought stress, optimizing plant health and furthering sustainability - Explores emerging cropping systems and opportunities
Agriculture in the 21st century will need considerable modification to remain both productive and sustainable. Greater production is needed to meet the needs of our still-growing populations and to combat hunger and poverty. Declines in soil health and the pollution of water sources are making many of our production systems less tenable. These adverse trends are exacerbated more and more by the impacts of climate change. There are, fortunately, alternative methods available for agricultural practice that can countervail these constraints. Biological Approaches to Regenerative Soil Systems brings together the work of both researchers and practitioners to map out better approaches to contempor...
In any ecosystem, plant and microbe interaction is inevitable. They not only co-exist but also support each other’s survival and also provide for sustenance in stressful environment. Agro-ecosystems of many regions around the globe are affected by multi-stress. Major limiting factors affecting the agricultural productivity worldwide are environmental stresses. Apart from decreasing yield they introduce devastating impact on plant growth as well. Plants battle with various kind of stresses with the help of symbiotic association with the microbes in the rhizosphere. Naturally existing plant-microbe interaction facilitates survival of plants under these stressful conditions. Rhizosphere consi...
This book provides an account of the classical and recent trends in plant sciences, which have contributed for disease management strategies in plants for sustainable agriculture. Advancements in the disciplines of biological sciences like biotechnology, microbiology, bioinformatics as well as information and communication technology etc has given the new dimensions for the development of new plant disease management strategies. By keeping this perspective in view, the editors collected and compiled the useful, practical and recent information regarding plant disease management from a diverse group of authors from different countries associated with well-reputed scientific, teaching and rese...
This book provides a comprehensive overview of the benefits of biofertilizers as an alternative to chemical fertilizers and pesticides. Agricultural production has increased massively over the last century due to increased use of chemical fertilizers and pesticides, but these gains have come at a price. The chemicals are not only expensive; they also reduce microbial activity in agricultural soils and accumulate in the food chain, with potentially harmful effects for humans. Accordingly, it is high time to explore alternatives and to find solutions to overcome our increasing dependence on these chemicals. Biofertilizers, which consist of plant remains, organic matter and microorganisms, migh...