You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.
This book contains a detailed and self-contained presentation of the replica theory of infinite range spin glasses. The authors also explain recent theoretical developments, paying particular attention to new applications in the study of optimization theory and neural networks. About two-thirds of the book are a collection of the most interesting and pedagogical articles on the subject.
This book presents articles written by leading experts surveying several major subfields in Condensed Matter Physics and related sciences. The articles are based on invited talks presented at a recent conference honoring Nobel laureate Philip W. Anderson of Princeton University, who coined the phrase "More is different" while formulating his contention that all fields of physics, indeed all of science, involve equally fundamental insights. The articles introduce and survey current research in areas that have been close to Anderson's interests. Together, they illustrate both the deep impact that Anderson has had in this multifaceted field during the past half century and the progress spawned ...
An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.
With contributions from 24 global experts in diverse fields, and edited by world-recognized leaders in physical chemistry, chemical physics and biophysics, Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications presents a modern, complete survey of glassy phenomena in many systems based on firmly established characteristics of the underlying molecular motions as deduced by first principle theoretical calculations, or with direct/single-molecule experimental techniques. A well-rounded view of a variety of disordered systems where cooperative phenomena, which are epitomized by supercooled liquids, take place is provided. These systems include structural glasses and supercooled liquids, polymers, complex liquids, protein conformational dynamics, and strongly interacting electron systems with quenched/self-generated disorder. Detailed calculations and reasoned arguments closely corresponding with experimental data are included, making the book accessible to an educated non-expert reader.
The boundary between physics and computer science has become a hotbed of interdisciplinary collaboration. In this book the authors introduce the reader to the fundamental concepts of computational complexity and give in-depth explorations of the major interfaces between computer science and physics.
"The authors give a masterly account of the work on the Sherrington-Kirkpatrick model in the first 85 pages. Such a summary cannot be found elsewhere, and much of our current understanding of the problem is due to the authors of this book and their collaborators".This is an important book, which every physics library should have. It is also good reading for anyone who wants to know about these aspects of the spin glass problem, and why "replica symmetry breaking'' and "ultrametricity'' may be important".Physics Today, 1988" a very useful source of relevant information on the progress achieved by theoretical physicists in the field. It can be helpful also to mathematicians trying to develop a mathematically rigorous counterpart of this theory".EMS, 1999
Spin glasses are disordered magnetic systems that have led to the development of mathematical tools with an array of real-world applications, from airline scheduling to neural networks. Spin Glasses and Complexity offers the most concise, engaging, and accessible introduction to the subject, fully explaining what spin glasses are, why they are important, and how they are opening up new ways of thinking about complexity. This one-of-a-kind guide to spin glasses begins by explaining the fundamentals of order and symmetry in condensed matter physics and how spin glasses fit into--and modify--this framework. It then explores how spin-glass concepts and ideas have found applications in areas as d...
Computer science and physics have been closely linked since the birth of modern computing. In recent years, an interdisciplinary area has blossomed at the junction of these fields, connecting insights from statistical physics with basic computational challenges. Researchers have successfully applied techniques from the study of phase transitions to analyze NP-complete problems such as satisfiability and graph coloring. This is leading to a new understanding of the structure of these problems, and of how algorithms perform on them. Computational Complexity and Statistical Physics will serve as a standard reference and pedagogical aid to statistical physics methods in computer science, with a particular focus on phase transitions in combinatorial problems. Addressed to a broad range of readers, the book includes substantial background material along with current research by leading computer scientists, mathematicians, and physicists. It will prepare students and researchers from all of these fields to contribute to this exciting area.
Phase transitions in disordered systems and related dynamical phenomena are a topic of intrinsically high interest in theoretical and experimental physics. This book presents a unified view, adopting concepts from each of the disjoint fields of disordered systems and nonlinear dynamics. Special attention is paid to the glass transition, from both experimental and theoretical viewpoints, to modern concepts of pattern formation, and to the application of the concepts of dynamical systems for understanding equilibrium and nonequilibrium properties of fluids and solids. The content is accessible to graduate students, but will also be of benefit to specialists, since the presentation extends as far as the topics of ongoing research work.