You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Proteomics is a multifaceted, interdisciplinary field which studies the complexity and dynamics of proteins in biological systems. It combines powerful separation and analytical technology with advanced informatics to understand the function of proteins in the cell and in the body. This book provides a clear conceptual description of each facet of proteomics, describes recent advances in technology and thinking in each area, and provides details of how these have been applied to a variety of biological problems. It is written by expert practitioners in the field, from industry, research institutions, and the clinic. It provides junior and experienced researchers with an invaluable proteomic reference, and gives fascinating glimpses of the future of this dynamic field.
Introduction to the proteome (K. L. Williams, D. F. Hochstrasser). Two-dimensional electrophoresis: the state of the art and future directions (B. R. Herbert, J.-C. Sanchez, L. Bini). large-scale comparative protein modeling ( M. C. Peitsch, N. Guex); Clinical and biomedical applications of proteomics (D. F. Hochstrasser). Biological applications of proteomics (K. L. Williams, V. Pallini). Conclusions (D. F. Hochstrasser, L. Williams). Index.
Hands-on researchers describe in step-by-step detail 73 proven laboratory methods and bioinformatics tools essential for analysis of the proteome. These cutting-edge techniques address such important tasks as sample preparation, 2D-PAGE, gel staining, mass spectrometry, and post-translational modification. There are also readily reproducible methods for protein expression profiling, identifying protein-protein interactions, and protein chip technology, as well as a range of newly developed methodologies for determining the structure and function of a protein. The bioinformatics tools include those for analyzing 2D-GEL patterns, protein modeling, and protein identification. All laboratory-based protocols follow the successful Methods in Molecular BiologyTM series format, each offering step-by-step laboratory instructions, an introduction outlining the principle behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.
Unparalleled in its scope and depth, this book brings together proteomic approaches in diagnosis and treatment from all clinical fields, including clinical toxicology. The result is a new discipline in molecular medicine that will revolutionize the treatment and prevention of cancer, stroke and other severe diseases. Following an overview of clinical proteomics, the authors look at the technologies available, before moving on to cancer, cardiopulmonary disease, diabetes and stroke. A whole section is devoted to toxicity and the work is rounded off with a discussion of the future of clinical proteomics.
This volume is the first collection of applications of proteomics to analyze various human body fluids. Proteomics of Human Bodyfluids consists of two parts. The first provides basic principles and strategies for proteomic analysis of human body fluids. The second offers more details regarding methodologies and recent findings and clinical applications of each specific type of human body fluids.
A compendium of thirty-four powerful techniques for identifying and analyzing the diversity of proteins expressed in cells. Thee readily reproducible proteomic methods range from general to specific techniques, and include methods for data analysis, posttranslational modification, and its variants and isoforms. Additional methods demonstrate the application of proteomics to the discovery of serological tumor markers, to identifying the determinants of sensitivity to antitumor drugs, and to specialized fields, such as endocrinology, plant biology, nephrology, and urology.
With the completion of sequencing projects and the advancement of a- lytical tools for protein identification, proteomics—the study of the expressed part of the genome—has become a major region of the burgeoning field of functional genomics. High-resolution 2-D gels can reveal virtually all p- teins present in a cell or tissue at any given time, including posttranslationally modified proteins. Changes in the expression and structure of most cellular proteins caused by differentiation or external stimuli can be displayed and eventually identified using 2-D protein gels. 2-D Proteome Analysis Protocols covers all aspects of the use of 2-D protein electrophoresis for the analysis of biologi...
Most will agree that gel electrophoresis is one of the basic pillars of molecular biology. This coined terminology covers a myriad of gel-based separation approaches that rely mainly on fractionating biomolecules under electrophoretic current based mainly on the molecular weight. In this book, the authors try to present simplified fundamentals of gel-based separation together with exemplarily applications of this versatile technique. We try to keep the contents of the book crisp and comprehensive, and hope that it will receive overwhelming interest and deliver benefits and valuable information to the readers.
Principles of Genomics and Proteomics is the perfect reference for graduate students and researchers in these areas to understand its principles and execute precise and reproducible experiments. Following an introductory chapter, the book dives into proper research, including genome mapping. Experiments covered in the book span from Sangers Sequencing, Shotgun sequencing, SAGE analysis, DNA footprinting, Gel retardation, ChIP, and protein resolution methods, including PAGE, 2D gel electrophoresis and isoelectric focusing. Biophysical techniques are also described in detail, including ultraviolet and visible light spectroscopy, fluorescence spectroscopy, NMR and X-ray diffraction. A final pro...
With the ever-increasing volume of information in clinical medicine, researchers and health professionals need computer-based storage, processing and dissemination. In this book, leading experts in the field provide a series of articles focusing on software applications used to translate information into outcomes of clinical relevance. This book is the perfect guide for researchers and clinical scientists working in this emerging "omics" era.