You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Domain decomposition is an active, interdisciplinary research field concerned with the development, analysis, and implementation of coupling and decoupling strategies in mathematical and computational models. This volume contains selected papers presented at the 17th International Conference on Domain Decomposition Methods in Science and Engineering. It presents the newest domain decomposition techniques and examines their use in the modeling and simulation of complex problems.
This book contains four survey papers related to different topics in computational mechanics, in particular (1) novel discretization and solver techniques in mechanics and (2) inverse, control, and optimization problems in mechanics. These topics were considered in lectures, seminars, tutorials, and workshops at the Special Semester on Computational Mechanics held at the Johann Radon Institute for Computational and Applied Mathematics (RICAM), Linz, Austria, in December 2005.
This book is a collection of lecture notes for the CIME course on "Multiscale and Adaptivity: Modeling, Numerics and Applications," held in Cetraro (Italy), in July 2009. Complex systems arise in several physical, chemical, and biological processes, in which length and time scales may span several orders of magnitude. Traditionally, scientists have focused on methods that are particularly applicable in only one regime, and knowledge of the system on one scale has been transferred to another scale only indirectly. Even with modern computer power, the complexity of such systems precludes their being treated directly with traditional tools, and new mathematical and computational instruments have had to be developed to tackle such problems. The outstanding and internationally renowned lecturers, coming from different areas of Applied Mathematics, have themselves contributed in an essential way to the development of the theory and techniques that constituted the subjects of the courses.
Domain decomposition is an active, interdisciplinary research area that is devoted to the development, analysis and implementation of coupling and decoupling strategies in mathematics, computational science, engineering and industry. A series of international conferences starting in 1987 set the stage for the presentation of many meanwhile classical results on substructuring, block iterative methods, parallel and distributed high performance computing etc. This volume contains a selection from the papers presented at the 15th International Domain Decomposition Conference held in Berlin, Germany, July 17-25, 2003 by the world's leading experts in the field. Its special focus has been on numerical analysis, computational issues,complex heterogeneous problems, industrial problems, and software development.
Domain decomposition is an active research area concerned with the development, analysis, and implementation of coupling and decoupling strategies in mathematical and computational models of natural and engineered systems. The present volume sets forth new contributions in areas of numerical analysis, computer science, scientific and industrial applications, and software development.
Following up the seminal Spectral Methods in Fluid Dynamics, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics contains an extensive survey of the essential algorithmic and theoretical aspects of spectral methods for complex geometries. These types of spectral methods were only just emerging at the time the earlier book was published. The discussion of spectral algorithms for linear and nonlinear fluid dynamics stability analyses is greatly expanded. The chapter on spectral algorithms for incompressible flow focuses on algorithms that have proven most useful in practice, has much greater coverage of algorithms for two or more non-periodic directions, and shows how to treat outflow boundaries. Material on spectral methods for compressible flow emphasizes boundary conditions for hyperbolic systems, algorithms for simulation of homogeneous turbulence, and improved methods for shock fitting. This book is a companion to Spectral Methods: Fundamentals in Single Domains.
In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics.
This book offers a thorough guide starting from fundamental functional analysis leading to the coupling of Stokes and Darcy equations, including numerical analysis and scientific computing. Almost all intermediate results are given with complete, rigorous proofs, including theorems which can be rarely found in the literature such that this book serves well as a reference on the topic. Special care is taken to analyze the difficult cases of non-smooth interfaces which are not completely enclosed in one subdomain, i.e, intersect with the outer boundary. This can hardly be found in the literature. Additionally, known and new subdomain iterative methods are introduced, analyzed and applied to standard examples as well as one example motivated by a geoscientific setting.
This book introduces the mathematical concepts that underpin computer graphics. It is written in an approachable way, without burdening readers with the skills of ow to do'things. The author discusses those aspects of mathematics that relate to the computer synthesis of images, and so gives users a better understanding of the limitations of computer graphics systems. Users of computer graphics who have no formal training and wish to understand the essential foundations of computer graphics systems will find this book very useful, as will mathematicians who want to understand how their subject is used in computer image synthesis. '
These are the proceedings of the 20th international conference on domain decomposition methods in science and engineering. Domain decomposition methods are iterative methods for solving the often very large linearor nonlinear systems of algebraic equations that arise when various problems in continuum mechanics are discretized using finite elements. They are designed for massively parallel computers and take the memory hierarchy of such systems in mind. This is essential for approaching peak floating point performance. There is an increasingly well developed theory whichis having a direct impact on the development and improvements of these algorithms.