You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The paradigm shift towards many-core parallelism is accompanied by two fundamental questions: how should the many processors on a single die communicate to each other and what are suitable programming models for these novel architectures? In this thesis, the author tackles both questions by reviewing the reconfigurable mesh model of massively parallel computation for many-cores. The book presents the design, implementation and evaluation of a many-core architecture that is based on the execution principles and communication infrastructure of the reconfigurable mesh. This work fundamentally rests on FPGA implementations and shows that reconfigurable mesh processors with hundreds of autonomous cores are feasible. Several case studies demonstrate the effectiveness of programming and illustrate why the reconfigurable mesh is a promising model for many-cores.
This book constitutes the refereed proceedings of the International Conference on Architecture of Computing Systems, ARCS 2004, held in Augsburg, Germany, in March 2004. The 22 revised full papers presented together with the abstracts of two invited lectures were carefully reviewed and selected from 50 submissions. The papers are organized in topical sections on organic computing, peer-to-peer computing, reconfigurable hardware, hardware, wireless architectures and networking, and applications.
Embedded systems now include a very large proportion of the advanced products designed in the world, spanning transport (avionics, space, automotive, trains), electrical and electronic appliances (cameras, toys, televisions, home appliances, audio systems, and cellular phones), process control (energy production and distribution, factory automation and optimization), telecommunications (satellites, mobile phones and telecom networks), and security (e-commerce, smart cards), etc. The extensive and increasing use of embedded systems and their integration in everyday products marks a significant evolution in information science and technology. We expect that within a short timeframe embedded sy...
Despite its importance, the role of HdS is most often underestimated and the topic is not well represented in literature and education. To address this, Hardware-dependent Software brings together experts from different HdS areas. By providing a comprehensive overview of general HdS principles, tools, and applications, this book provides adequate insight into the current technology and upcoming developments in the domain of HdS. The reader will find an interesting text book with self-contained introductions to the principles of Real-Time Operating Systems (RTOS), the emerging BIOS successor UEFI, and the Hardware Abstraction Layer (HAL). Other chapters cover industrial applications, verification, and tool environments. Tool introductions cover the application of tools in the ASIP software tool chain (i.e. Tensilica) and the generation of drivers and OS components from C-based languages. Applications focus on telecommunication and automotive systems.
Cartesian Genetic Programming (CGP) is a highly effective and increasingly popular form of genetic programming. It represents programs in the form of directed graphs, and a particular characteristic is that it has a highly redundant genotype–phenotype mapping, in that genes can be noncoding. It has spawned a number of new forms, each improving on the efficiency, among them modular, or embedded, CGP, and self-modifying CGP. It has been applied to many problems in both computer science and applied sciences. This book contains chapters written by the leading figures in the development and application of CGP, and it will be essential reading for researchers in genetic programming and for engineers and scientists solving applications using these techniques. It will also be useful for advanced undergraduates and postgraduates seeking to understand and utilize a highly efficient form of genetic programming.
Organic Computing has emerged as a challenging vision for future information processing systems. Its basis is the insight that we will increasingly be surrounded by and depend on large collections of autonomous systems, which are equipped with sensors and actuators, aware of their environment, communicating freely, and organising themselves in order to perform actions and services required by the users. These networks of intelligent systems surrounding us open fascinating ap-plication areas and at the same time bear the problem of their controllability. Hence, we have to construct such systems as robust, safe, flexible, and trustworthy as possible. In particular, a strong orientation towards...
This book constitutes the refereed proceedings of the 12th International Conference on Field-Programmable Logic and Applications, FPL 2002, held in Montpellier, France, in September 2002. The 104 revised regular papers and 27 poster papers presented together with three invited contributions were carefully reviewed and selected from 214 submissions. The papers are organized in topical sections on rapid prototyping, FPGA synthesis, custom computing engines, DSP applications, reconfigurable fabrics, dynamic reconfiguration, routing and placement, power estimation, synthesis issues, communication applications, new technologies, reconfigurable architectures, multimedia applications, FPGA-based arithmetic, reconfigurable processors, testing and fault-tolerance, crypto applications, multitasking, compilation techniques, etc.
The two-volume set LNCS 6852/6853 constitutes the refereed proceedings of the 17th International Euro-Par Conference held in Bordeaux, France, in August/September 2011. The 81 revised full papers presented were carefully reviewed and selected from 271 submissions. The papers are organized in topical sections on support tools and environments; performance prediction and evaluation; scheduling and load-balancing; high-performance architectures and compilers; parallel and distributed data management; grid, cluster and cloud computing; peer to peer computing; distributed systems and algorithms; parallel and distributed programming; parallel numerical algorithms; multicore and manycore programming; theory and algorithms for parallel computation; high performance networks and mobile ubiquitous computing.