You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a general holistic view of materials degradation without undue emphasis on aqueous corrosion with the neglect of other important topics such as liquid metal corrosion. Discussion of materials degradation is balanced by detailed description and evaluation of surface engineering as a means of managing materials degradation. Thus, the trainee engineer is presented with a comprehensive view of the problem rather than just a part of the problem. The control or management of materials degradation is not only discussed in scientific terms, but the economics or financial aspects of materials degradation and surface engineering is also discussed in detail with the help of analytical models.
A wide variety of materials is being used in biomedical engineering for various functions. This includes a range of ceramics, polymers and metallic materials for implants and medical devices. A major question is how these materials will perform inside the body, which is very sensitive to alien materials.
The second edition of Materials Degradation and Its Control by Surface Engineering continues the theme of the first edition, where discussions on corrosion, wear, fatigue and thermal damage are balanced by similarly detailed discussions on their control methods, e.g. painting and metallic coatings. The book is written for the non-specialist, with an emphasis on introducing technical concepts graphically rather than through algebraic equations. In the second edition, the graphic content is enhanced by an additional series of colour and monochrome photographs that illustrate key aspects of the controlling physical phenomena. Existing topics such as liquid metal corrosion have been extended and new topics such as corrosion inhibitors added.
This book enables readers without specialist knowledge to understand the ways in which materials can be used to enhance people's lives. The range is vast — from simple contact uses, through artificial limbs, to permanently implanted devices.To appreciate the medical applications of materials, it is necessary to understand why they are used. Therefore, a discussion on the nature and behaviour of materials is preceded by a survey of the evolution of modern surgical techniques. The effect of “foreign” materials on the body's immune system is then considered, followed by a study of specific uses of materials, including extra-corporeal machines and implanted devices.The last chapter deals with new and highly sophisticated techniques — including minimal access surgery, robotics, nanotechnology, natural polymers, and the growth of “artificial” organs — and concludes with a look at the future.
The primary objective of the Asia-Pacific Conference on Engineering Plasticity and Its Applications (AEPA) is to provide a free forum for exchanging ideas and introducing the latest research findings in the field of engineering plasticity. This conference is unique among the related conferences in that it provides a forum for all fields of plasticity so that multi-disciplinary research works are encouraged. This proceedings volume consists of papers presented at AEPA2008, and covers the following categories in all fields of engineering plasticity: constitutive modeling; damage, fracture, fatigue and failure; dynamic loading and crash dynamics; engineering applications and case studies; exper...
This book comprises the select proceedings of the International Conference on Emerging Trends in Mechanical and Industrial Engineering (ICETMIE) 2019. The conference covers current trends in thermal, design, industrial, production and other sub-disciplines of mechanical engineering. This volume focuses on different industrial and production engineering areas such as additive manufacturing, rapid prototyping, computer aided engineering, advanced manufacturing processes, manufacturing management and automation, sustainable manufacturing systems, metrology, manufacturing process optimization, operations research and decision-making models, production planning and inventory control, supply chain management, and quality engineering. The contents of this book will be useful for students, researchers and other professionals interested in industrial and production engineering.
Many years of cumulative research has been conducted on the usage of fiber-reinforced composites for biomedical application, but no one source exists where this topic is dealt with systematically. This book addresses polymer composites applied to bioengineering in a comprehensive manner.For potential applications to be successful, full advantage must be taken of the materials properties and the manufacturing techniques to meet the needs of biomedical application. This book focuses on fiber-based composites applied to bioengineering. It addresses three main areas. First, it presents a comprehensive survey of biocomposites from the existing literature in various medical applications, paying particular attention to hard-tissue-related implants. Second, mechanical designs and manufacturing aspects of various fibrous polymer matrix composites are described. The third area concerns examples of the design and development of several medical devices and implants using polymer composites.
This book explores the synthesis, characterization, and applications of graphene and its derivatives. It covers advancements in improving graphene quality, surface engineering methods, and increasing material functionality. The topics covered include functionalized graphene, graphene quantum dots, novel device fabrication approaches, and diverse applications. The book also investigates the fundamental principles of characterizing graphene and its derivatives, along with electronic structures, theoretical investigations, and computational analyses relevant to their applications, synthesis, and properties. The chapters are organized to cover these topics, starting with a general overview of surface chemistry and its concepts for surface engineering of graphene, the fundamental properties of graphene and its derivatives, their synthesis, and applications in numerous fields, and concludes with a future perspective. Significantly, for the first time, both industrial and medical applications are gathered in one book, enabling us to discuss the confrontation of medical and industrial applications of graphene and graphene quantum dots.
Virtual Modelling and Rapid Manufacturing presents essential research in the area of Virtual and Rapid Prototyping. It contains reviewed papers that were presented at the 2nd International Conference on Advanced Research in Virtual and Rapid Prototyping, held at the School of Technology and Management of the Polytechnic Institute of Leiria, Portugal, from September 28 to October 1, 2005. The volume covers a wide range of topical subjects, such as medical imaging, reverse engineering, virtual reality and prototyping, biomanufacturing and tissue engineering, advanced rapid prototyping technologies and micro-fabrication, biomimetics and materials, and concurrent engineering