You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 118. The magnetosphere is an open system that interacts with the solar wind. In this system, solar wind energy continuously permeates different regions of the magnetosphere through electromagnetic processes, which we can well describe in terms of current systems. In fact, our ability to use various methods to study magnetospheric current systems has recently prompted significant progress in our understanding of the phenomenon. Unprecedented coverage of satellite and ground?]based observations has advanced global approaches to magnetospheric current systems, whereas advanced measurements of electromagnetic fields and particles have brought new insights about micro?]processes. Increased computer capabilities have enabled us to simulate the dynamics not only of the terrestrial magnetosphere but also the magnetospheres of other planets. Based on such developments, the present volume revisits outstanding issues about magnetospheric current systems.
Representatives of several scientific communities, such as planetary scientists, astronomers, space physicists, chemists and astrobiologists have met with the aim to review the knowledge on four major themes: (1) the study of the formation and evolution processes of the outer planets and their satellites, beginning with the formation of compounds and planetesimals in the solar nebula, and the subsequent evolution of the interiors of the outer planets, (2) a comparative study of the atmospheres of the outer planets and Titan, (3) the study of the planetary magnetospheres and their interactions with the solar wind, and (4) the formation and properties of satellites and rings, including their interiors, surfaces, and their interaction with the solar wind and the magnetospheres of the outer planets. Beyond these topics, the implications for the prebiotic chemical evolution on Europa and Titan are reviewed. At the time of publication, the study of the outer planets is particularly motivated by the fact that the Saturn system is being investigated by the Cassini-Huygens mission.
Readers will find grouped together here the most recent observations, current theoretical models and present understanding of the coupled atmosphere, magnetosphere and solar wind system. The book begins with a general discussion of mass, energy and momentum transport in magnetodiscs. The physics of partially ionized plasmas of the giant planet magnetodiscs is of general interest throughout the field of space physics, heliophysics and astrophysical plasmas; therefore, understanding the basic physical processes associated with magnetodiscs has universal applications. The second chapter characterizes the solar wind interaction and auroral responses to solar wind driven dynamics. The third chapter describes the role of magnetic reconnection and the effects on plasma transport. Finally, the last chapter characterizes the spectral and spatial properties of auroral emissions, distinguishing between solar wind drivers and internal driving mechanisms. The in-depth reviews provide an excellent reference for future research in this discipline.
Julian Schwinger was one of the leading theoretical physicists of the twentieth century. His contributions are as important, and as pervasive, as those of Richard Feynman, with whom (and with Sin-itiro Tomonaga) he shared the 1965 Nobel Prize for Physics. Yet, while Feynman is universally recognized as a cultural icon, Schwinger is little known even to many within the physics community. In his youth, Julian Schwinger was a nuclear physicist, turning to classical electrodynamics after World War II. In the years after the war, he was the first to renormalize quantum electrodynamics. Subsequently, he presented the most complete formulation of quantum field theory and laid the foundations for th...
This book makes good background reading for much of modern magnetospheric physics. Its origin was a Festspiel for Professor Jim Dungey, former professor in the Physics Department at Imperial College on the occasion of his 90th birthday, 30 January 2013. Remarkably, although he retired 30 years ago, his pioneering and, often, maverick work in the 50’s through to the 70’s on solar terrestrial physics is probably more widely appreciated today than when he retired. Dungey was a theoretical plasma physicist. The book covers how his reconnection model of the magnetosphere evolved to become the standard model of solar-terrestrial coupling. Dungey’s open magnetosphere model now underpins a hol...
Long before Galileo published his discoveries about Jupiter, lunar craters, and the Milky Way in the Starry Messenger in 1610, people were fascinated with the planets and stars around them. That interest continues today, and scientists are making new discoveries at an astounding rate. Ancient lake beds on Mars, robotic spacecraft missions, and new definitions of planets now dominate the news. How can you take it all in? Start with the new Encyclopedia of the Solar System, Second Edition.This self-contained reference follows the trail blazed by the bestselling first edition. It provides a framework for understanding the origin and evolution of the solar system, historical discoveries, and det...
A journey guided by science that explores the universe, the earth, and the story of life For Irwin Shapiro, science starts with questions. This book provides a broad and entertaining survey of major scientific discoveries that have changed our views of nature and, in turn, spawned further questions. Shapiro, an award-winning scientist and beloved teacher, separates his inquiry into three parts: looking up at the universe; looking down at the earth and its fossils; and looking in at the story of life. His framework encourages readers to view science as a detective story--to observe and question nature and natural phenomena, and to base all conclusions on scientific evidence. With his knowledgeable yet conversational approach, Shapiro offers an enjoyable way for the curious to learn about the foundations of a range of scientific topics: the motions of bodies in the cosmos, the history and structure of the earth, the evolution of organisms, and the search for extraterrestrial life and intelligence.
Encyclopedia of World Scientists, Updated Edition is a comprehensive reference tool for learning about scientists and their work. It includes 500 cross-referenced profiles of well-known scientific "greats" of history and contemporary scientists whose work is verging on prominence. More than 100 entries are devoted to women and minority scientists. Each entry includes the subject's full name, dates of birth/death, nationality, and field(s) of specialization. A biographical essay focuses primarily on the subject's scientific work and achievements; it also highlights additional information, such as place of birth, parents' names and occupations, name(s) of spouse(s) and children, educational ba...
All aspects of space plasmas in the Solar System are introduced and explored in this text for senior undergraduate and graduate students. Introduction to Space Physics provides a broad, yet selective, treatment of the complex interactions of the ionized gases of the solar terrestrial environment. The book includes extensive discussion of the Sun and solar wind, the magnetized and unmagnetized planets, and the fundamental processes of space plasmas including shocks, plasma waves, ULF waves, wave particle interactions, and auroral processes. The text devotes particular attention to space plasma observations and integrates these with phenomenological and theoretical interpretations. Highly coordinated chapters, written by experts in their fields, combine to provide a comprehensive introduction to space physics. Based on an advanced undergraduate and graduate course presented in the Department of Earth and Space Sciences at the University of California, Los Angeles, the text will be valuable to both students and professionals in the field.