You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudohol...
This volume is based on PDE courses given by the authors at the Courant Institute and at the University of Notre Dame, Indiana. Presented are basic methods for obtaining various a priori estimates for second-order equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications. The equations considered in the book are linear; however, the presented methods also apply to nonlinear problems.
Nature tries to minimize the surface area of a soap film through the action of surface tension. The process can be understood mathematically by using differential geometry, complex analysis, and the calculus of variations. This book employs ingredients from each of these subjects to tell the mathematical story of soap films. The text is fully self-contained, bringing together a mixture of types of mathematics along with a bit of the physics that underlies the subject. The development is primarily from first principles, requiring no advanced background material from either mathematics or physics. Through the Maple applications, the reader is given tools for creating the shapes that are being ...
Motivated by some notorious open problems, such as the Jacobian conjecture and the tame generators problem, the subject of polynomial automorphisms has become a rapidly growing field of interest. This book, the first in the field, collects many of the results scattered throughout the literature. It introduces the reader to a fascinating subject and brings him to the forefront of research in this area. Some of the topics treated are invertibility criteria, face polynomials, the tame generators problem, the cancellation problem, exotic spaces, DNA for polynomial automorphisms, the Abhyankar-Moh theorem, stabilization methods, dynamical systems, the Markus-Yamabe conjecture, group actions, Hilbert's 14th problem, various linearization problems and the Jacobian conjecture. The work is essentially self-contained and aimed at the level of beginning graduate students. Exercises are included at the end of each section. At the end of the book there are appendices to cover used material from algebra, algebraic geometry, D-modules and Gröbner basis theory. A long list of ''strong'' examples and an extensive bibliography conclude the book.
Questions that arose from linear programming and combinatorial optimization have been a driving force for modern polytope theory, such as the diameter questions motivated by the desire to understand the complexity of the simplex algorithm, or the need to study facets for use in cutting plane procedures. In addition, algorithms now provide the means to computationally study polytopes, to compute their parameters such as flag vectors, graphs and volumes, and to construct examples of large complexity. The papers of this volume thus display a wide panorama of connections of polytope theory with other fields. Areas such as discrete and computational geometry, linear and combinatorial optimization, and scientific computing have contributed a combination of questions, ideas, results, algorithms and, finally, computer programs.
Hyperbolic Manifolds and Discrete Groups is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis. The main focus throughout the text is on the "Big Monster," i.e., on Thurston’s hyperbolization theorem, which has not only completely changes the landscape of 3-dimensinal topology and Kleinian group theory but is one of the central results of 3-dimensional topology. The book is fairly self-contained, replete with beautiful illustrations, a rich set of examples of key concepts, numerous exercises, and an extensive bibliography and index. It should serve as an ideal graduate course/seminar text or as a comprehensive reference.
"This book covers some of the main aspects of nonlinear analysis. It concentrates on stressing the fundamental ideas instead of elaborating on the intricacies of the more esoteric ones...it encompass[es] many methods of dynamical systems in quite simple and original settings. I recommend this book to anyone interested in the main and essential concepts of nonlinear analysis as well as the relevant methodologies and applications." --MATHEMATICAL REVIEWS
The turbulent, often tragic life of America's greatest playwright, Eugene O'Neill, is laid bare in this acclaimed and insightful biography.