You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The production of low cost and environmentally friendly high performing carbon materials is crucial for a sustainable future. Sustainable Carbon Materials from Hydrothermal Processes describes a sustainable and alternative technique to produce carbon from biomass in water at low temperatures, a process known as Hydrothermal Carbonization (HTC). Sustainable Carbon Materials from Hydrothermal Processes presents an overview of this new and rapidly developing field, discussing various synthetic approaches, characterization of the final products, and modern fields of application for of sustainable carbon materials. Topics covered include: • Green carbon materials • Porous hydrothermal carbons...
Interdisciplinary exploration of the best scientific and political strategies to attain global sustainability, from many Nobel Prize-winning and other high-profile authors.
Following in the lineage of Adsorption by Carbons (Bottani & Tascon, 2008), this work explores current research within contemporary novel carbon adsorbents. Both basic and applied aspects are discussed for this important class of materials. The first section of the book introduces physical adsorption and carbonaceous materials, and is followed by a section concerning the fundamentals of adsorption by carbons. This leads to development of a series of theoretical concepts that serve as an introduction to the following section in which adsorption is mainly envisaged as a tool to characterize the porous texture and surface chemistry of carbons. Particular attention is paid to novel nanocarbons, ...
An overview of the recent developments and prospects in this highly topical area, covering the synthesis, characterization, properties and applications of hierarchical nanostructured materials. The book concentrates on those materials relevant for research and development in the fields of energy, biomedicine and environmental protection, with a strong focus on 3D materials based on nanocarbons, mesoporous silicates, hydroxides, core-shell particles and helical nanostructures. Thanks to its clear concept and application-oriented approach, this is an essential reference for experienced researchers and newcomers to the field alike.
This book systematically introduces the fundamentals, preparation technology, state-of-the-art applications, and future development of biomass-derived porous carbon materials. The authors provide a theoretical foundation that demonstrates the microstructure and physicochemical properties of carbon materials. The fabrication methods, including physical activation methods, chemical activation methods, and advances in other new fabrication methods are explicitly described. The book also identifies many potential applications of biomass (especially biomass-derived porous carbon materials), such as supercapacitors, removal of organic pollutants from water, CO2 capture, photocatalytic application, and farmland restoration. The book will be a valuable resource for researchers, scientists, and engineers working in the field of biomass-derived porous carbon materials, carbon resource development, and environmental protection.
Scarcity of resources and increasing population and energy demands are important issues of the twenty-first century. A multidisciplinary approach is needed to produce suitable alternatives-such as renewable resources-for a more sustainable future. One of the most promising and widely available renewable feedstocks is biomass, which has significant
Porous carbon materials are at the heart of many applications, including renewable energy storage and generation, due to their superior physical properties and availability. The environmentally-friendly production of these materials is crucial for a sustainable future. This book focuses on the transformation of sustainable precursors into functional, porous carbonaceous materials via the two most significant approaches: Starbon® and Hydrothermal Carbonisation. Covering cutting-edge research and emerging areas, chapters cover applications of porous carbon materials in catalysis and separation science as well as in energy science. Moreover, the challenges of characterization of these materials and their commercialization are explained by worldwide experts. The content will be accessible and valuable to post-graduate students and senior researchers alike and it will serve as a significant reference for academics and industrialists working in the areas of materials science, catalysis and separation science.
This thesis focuses on porous monolithic materials that are not in the forms of particles, fibers, or films. In particular, the synthetic strategy of porous monolithic materials via the sol–gel method accompanied by phase separation, which is characterized as the non-templating method for tailoring well-defined macropores, is described from the basics to actual synthesis. Porous materials are attracting more and more attention in various fields such as electronics, energy storage, catalysis, sensing, adsorbents, biomedical science, and separation science. To date, many efforts have been made to synthesize porous materials in various chemical compositions—organics, inorganics including metals, glasses and ceramics, and organic-inorganic hybrids. Also demonstrated in this thesis are the potential applications of synthesized porous monolithic materials to separation media as well as to electrodes for electric double-layer capacitors (EDLCs) and Li-ion batteries (LIBs). This work is ideal for graduate students in materials science and is also useful to engineers or scientists seeking basic knowledge of porous monolithic materials.
This book introduces the synthesis and modification of 3D hierarchical porous graphene materials and presents various applications of it. By directly constructing a 3D graphene framework with sp2 hybridization and hierarchical porosity, this book is aimed to bridge the gap between 2D ideal nanostructure and 3D practical materials by systematically studying the growth mechanism, synthetic methodology, customized application, and system promotion of 3D hierarchical porous graphene (hpG) materials. The achievements presented offer a valuable contribution to the fundamental research and the industrial development of graphene with significantly improved performance and also inspire further research into various nanomaterials beyond graphene.
Nanomaterials from Renewable Resources for Emerging Applications details developments in nanomaterials produced from renewable materials and their usage in food and packaging, energy conservation, and environmental applications. • Introduces fundamentals of nanomaterials from renewable resources, including processing and characterization. • Covers nanomaterials for applications in food and packaging, including nanocellulose, lignin- and chitosan-based nanomaterials, and nanostarch. • Discusses applications in energy conservation, such as supercapacitors, electrolyte membranes, energy storage devices, and insulation. • Describes environmental uses such as water remediation and purification and oil spill clean-ups. • Highlights advantages and challenges in commercialization of green nanoparticle-based materials. Equally beneficial to researchers and professionals, this book is aimed at readers across materials science and engineering, chemical engineering, chemistry, and related fields interested in sustainable engineering.