You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Volume 8, solely devoted to the toxicology of metals and metalloids as well as their compounds, focuses on human health. Not surprisingly, all related research areas are rapidly developing due to the role of metals and metalloids in the environment, for the work place, for food and water supply, etc. Written by 40 internationally recognized experts, the 14 stimulating chapters provide an authoritative and timely resource for scientists working in the wide range from analytical, physical, inorganic, and environmental biochemistry all the way through to toxicology, physiology, and medicine. Volume 8 highlights, supported by nearly 1900 references, in a comprehensive and timely manner the principles of risk assessment regarding the effects of metals on human health. It examines how metal ions and their compounds affect the pulmonary, cardiovascular, gastrointestinal (including liver), hematological, immune, and neurological systems, the kidney, skin and eyes, as well as human reproduction and development. MILS-8 terminates with the role of metal ions as endocrine disrupters, in genotoxicity, and cancer risk.
Medicinal chemistry is a complex science that lies at the very heart of drug discovery. Poor solubility, complex metabolism, tissue retention and slow elimination are just some of the properties of investigational compounds that present a challenge to the design and conduct of ADMET studies. Medicinal chemistry experience and knowledge relating to how a lead structure was modified to solve a specific problem is generally very challenging to retrieve. Presented in a visual and accessible style, this book provides rapid solutions to overcome the universal challenges to optimizing ADMET.
It is an old wisdom that metals are indispensable for life. Indeed, severalof them, like sodium, potassium, and calcium, are easily discovered in livingmatter. However, the role of metals and their impact on life remainedlargely hidden until inorganic chemistry and coordination chemistryexperienced a pronounced revival in the 1950s. The experimental and theoreticaltools created in this period and their application to biochemicalproblems led to the development of the field or discipline now known asBioinorganic Chemistry, Inorganic Biochemistry, or more recently alsooften addressed as Biological Inorganic Chemistry. By 1970 Bioinorganic Chemistry was established and further promoted bythe boo...
MILS-15 provides an up-to-date review of the metalloenzymes involved in the activation, production, and conversion of molecular oxygen as well as the functionalization of the chemically inert gases methane and ammonia. Found either in aerobes (humans, animals, plants, microorganisms) or in anaerobes (so-called “impossible bacteria”) these enzymes employ preferentially iron and copper at their active sites, in order to conserve energy by redox-driven proton pumps, to convert methane to methanol, or ammonia to hydroxylamine or other compounds. When it comes to the light-driven production of molecular oxygen, the tetranuclear manganese cluster of photosystem II must be regarded as the key p...
Volume 19, entitled Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic of the series Metal Ions in Life Sciences centers on the role of metal ions in clinical medicine. Metal ions are tightly regulated in human health: while essential to life, they can be toxic as well. Following an introductory chapter briefly discussing several important metal-related drugs and diseases and a chapter about drug development, the focus is fi rst on iron: its essentiality for pathogens and humans as well as its toxicity. Chelation therapy is addressed in the context of thalassemia, its relationship to neurodegenerative diseases and also the risks connected with iron adminis...
MILS-14 provides a most up-to-date view of the exciting biogeochemistry of gases in our environment as driven mostly by microorganisms. These employ a machinery of sophisticated metalloenzymes, where especially transition metals (such as Fe, Ni, Cu, Mo, W) play a fundamental role, that is, in the activation, transformation and syntheses of gases like dihydrogen, methane, carbon monoxide, acetylene and those of the biological nitrogen and sulfur cycles. The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment is a vibrant research area based mainly on structural and microbial biology, inorganic biological chemistry and environmental biochemistry. All this is covered in an auth...
MILS-16 provides an up-to-date review of the impact of alkali metal ions on life. Their bioinorganic chemistry and analytical determination, the solid state structures of bio-ligand complexes and the properties of alkali metal ions in solution in the context of all kinds of biologically relevant ligands are covered, this includes proteins (enzymes) and nucleic acids (G-quadruplexes). Minerals containing sodium (Na+) and potassium (K+) are abundant in the Earth's crust, making Na+ and K+ easily available. In contrast, the alkali elements lithium (Li+), rubidium, and cesium are rare and the radioactive francium occurs only in traces. Since the intra- and extracellular, as well as the compartme...
Metallomics and the Cell provides in an authoritative and timely manner in 16 stimulating chapters, written by 37 internationally recognized experts from 9 nations, and supported by more than 3000 references, several tables, and 110 illustrations, mostly in color, a most up-to-date view of the "metallomes" which, as defined in the "omics" world, describe the entire set of biomolecules that interact with or are affected by each metal ion. The most relevant tools for visualizing metal ions in the cell and the most suitable bioinformatic tools for browsing genomes to identify metal-binding proteins are also presented. Thus, MILS-12 is of relevance for structural and systems biology, inorganic biological chemistry, genetics, medicine, diagnostics, as well as teaching, etc.
MILS-13 provides an up-to-date review on the relationships between essential metals and human diseases, covering 13 metals and 3 metalloids: The bulk metals sodium, potassium, magnesium, and calcium, plus the trace elements manganese, iron, cobalt, copper, zinc, molybdenum, and selenium, all of which are essential for life. Also covered are chromium, vanadium, nickel, silicon, and arsenic, which have been proposed as being essential for humans in the 2nd half of the last century. However, if at all, they are needed only in ultra-trace amounts, and because of their prevalence in the environment, it has been difficult to prove whether or not they are required. In any case, all these elements a...
The discovery of ribozymes nearly 30 years ago triggered a huge interest in the chemistry and biology of RNAs. Much of the recently made progress focusing on metal ions is addressed in MILS 9. This book, written by 28 internationally recognized experts from 8 nations, provides a most up-to-date view and is thus of special relevance for colleagues teaching courses in biological inorganic chemistry and for researchers dealing, e.g., with nucleic acids, gene expression, and enzymology, but also for those in analytical and bioinorganic chemistry or biophysics. Structural and Catalytic Roles of Metal Ions in RNA describes in an authoritative and timely manner in 12 stimulating chapters, supported...