You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Climate-smart agriculture, or CSA, is a multidimensional approach to transforming and reshaping agricultural systems to support food security under the new realities of climate change. Global changes in rainfall and temperature patterns threaten agricultural production and increase the vulnerability of people dependent on agriculture for their livelihoods, residing mostly in the world's developing countries. Climate change interrupts food markets and agro-economy, posing population-wide risks to the food supply. Threats can be minimized by increasing the resilience capacity of farmers through improving agricultural practices as well as enhancing flexibility and resource use efficiency in agr...
To comprehend the organizational principle of cellular functions at diff erent levels, an integrative approach with large-scale experiments, the so-called ‘omics’ data including genomics, transcriptomics, proteomics, and metabolomics, is needed. Omics aims at the collective characterization and quantifi cation of pools of biological molecules that translate into the structure, function, and dynamics of an organism or organisms. Currently, omics is an essential tool to understand the molecular systems that underlie various plant functions. Furthermore, in several plant species, the development of omicsresources has progressed to address the particular biological properties of individual s...
In the modern world, to meet increasing energy demands we need to develop new technologies allowing us to use eco-friendly carbon-neutral energy sources. Solar energy as the most promising renewable source could be the way to solve that problem, but it is variable depending on day time and season. From this side, the understanding of photosynthesis process could be of significant help for us to develop effective strategies of solar energy capturing, conversion, and storage. Plants, algae, and cyanobacteria perform photosynthesis, annually producing around 100 billion tons of dry biomass. Presently, the detailed studies of photosynthetic system structure make functional investigations of the ...
Abiotic stress adversely affects crop production worldwide, decreasing average yields for most of the crops to 50%. Among various abiotic stresses affecting agricultural production, drought stress is considered to be the main source of yield reduction around the globe. Due to an increasing world population, drought stress will lead to a serious food shortage by 2050. The situation may become worse due to predicated global climate change that may multiply the frequency and duration and severity of such abiotic stresses. Hence, there is an urgent need to improve our understanding on complex mechanisms of drought stress tolerance and to develop modern varieties that are more resilient to drough...
The improvement in global crop production over the past several decades has been associated with increased use of nitrogen (N) fertilizer. However, on average, less than 50% of the nitrogen added to croplands globally is harvested as crop product. Inefficient use of N fertilizer by crops will result in substantial agricultural nitrogen losses, posing threats to human and ecosystem health. Crop production must increase dramatically to meet the growing demand for food and biofuels projected for 2050. To boost crop yield with lowered environmental cost, the use of high-potential crop cultivars and efficient nitrogen fertilizer management are required. Recent advances in N management practices, such as enhanced-efficiency fertilizer use, improved manure management and machine deep placement of fertilizer have opened up new strategies to achieve improved crop production with N use reduction. A better understanding of the key crop traits and regulatory processes in response to N fertilizer managements will facilitate the increase in crop yield, N use efficiency while minimizing impacts on the environment.
This comprehensive edited volume collects the most recent information with up-to-date citations, on the decrease in plant productivity under climatic changes and its link with global food security. The book emphasis on the crop management practices and recent advancement in the techniques for mitigating the negative effects of climate induced biotic and abiotic stress. It brings together 19 chapters developed by eminent researchers in the area of plant and environmental sciences. Global climate change is increasingly becoming a concern for future of agriculture. High levels of inorganic and organic pollutants and climatic stress adversely affects the sensitive and complex equation of natural resources and ecosystem services. To meet the increased food demand, plant productivity needs to be enhanced, therefore this book fills in the gap and brings together information on the physiological and molecular approaches for improving crop productivity. The book is resourceful reading material for researchers, faculty members, graduate and post graduate students of plant science, agriculture, agronomy, soil science, botany, Molecular biology and environmental science.
The field of horticultural biotechnology has witnessed remarkable growth in recent years, offering profound insights and innovations that are reshaping agriculture's future. Biotechnological Advances in Horticultural Crops serves as a comprehensive guide to the latest innovations and applications. This meticulously curated volume bridges the gap between fundamental knowledge and cutting-edge advancements. From plant tissue culture to genomic approaches, this book spans a diverse array of topics, catering to a broad audience of students, researchers, and academics. Key Features: In-depth exploration of plant tissue culture and its applications in horticultural crop improvement. Insightful cov...
Soil salinity is a key abiotic-stress and poses serious threats to crop yields and quality of produce. Owing to the underlying complexity, conventional breeding programs have met with limited success. Even genetic engineering approaches, via transferring/overexpressing a single ‘direct action gene’ per event did not yield optimal results. Nevertheless, the biotechnological advents in last decade coupled with the availability of genomic sequences of major crops and model plants have opened new vistas for understanding salinity-responses and improving salinity tolerance in important glycophytic crops. Our goal is to summarize these findings for those who wish to understand and target the m...
To address the environmental, socioeconomic, and geopolitical issues associated with increasing global human energy consumption, technologies for utilizing renewable carbon-free or carbon-neutral energy sources must be identified and developed. Among renewable sources, solar energy is quite promising as it alone is sufficient to meet global human demands well into the foreseeable future. However, it is diffuse and diurnal. Thus effective strategies must be developed for its capture, conversion and storage. In this context, photosynthesis provides a paradigm for large-scale deployment. Photosynthesis occurs in plants, algae, and cyanobacteria and has evolved over 3 billion years. The process ...
Photosynthesis is the process by which plants, algae and certain species of bacteria transform solar energy into chemical energy in the form of organic molecules. In fact, all life on the planet ultimately depends on photosynthetic energy conversion. The book provides a compressive and state-of-the-art of very recent progress on photosynthesis research. The topics span from atom to intact plants, from femtosecond reactions to season long production, from physics to agronomy. The book is to offer advanced undergraduate students, graduate students, and research specialists the most recent advances in the all aspects of photosynthesis research. The book is intended to offer researchers detailed information on the most recent advances in all aspects of photosynthesis research. Tingyun Kuang is a professor at Institute of Botany, the Chinese Academy of Sciences (CAS) and the Academician of CAS; Congming Lu is a professor at Institute of Botany, CAS; Lixin Zhang is a professor at Institute of Botany, CAS and the Chief Scientist in the National Basic Research Program of China on photosynthesis.