Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Extrapolation Theory with Applications
  • Language: en
  • Pages: 90

Extrapolation Theory with Applications

In the last few decades, interpolation theory has become an established field with many interesting applications to classical and modern analysis. In this book, the authors develop a general theory of extrapolation spaces, which is a complement to the familiar theory of interpolation spaces. Their results allow an extension of the classical extrapolation theorem of Yano to scales of Banach spaces. They give applications to classical and modern analysis, including extreme forms of Sobolev imbedding theorems, rearranging inequalities for classical operators, and Nash-Moser implicit function theorems.

Concentration, Functional Inequalities and Isoperimetry
  • Language: en
  • Pages: 226

Concentration, Functional Inequalities and Isoperimetry

The interactions between concentration, isoperimetry and functional inequalities have led to many significant advances in functional analysis and probability theory. Important progress has also taken place in combinatorics, geometry, harmonic analysis and mathematical physics, with recent new applications in random matrices and information theory. This will appeal to graduate students and researchers interested in the interplay between analysis, probability, and geometry.

Quantum Groups
  • Language: en
  • Pages: 352

Quantum Groups

The papers in this volume are based on the talks given at the conference on quantum groups dedicated to the memory of Joseph Donin, which was held at the Technion Institute, Haifa, Israel in July 2004. A survey of Donin's distinguished mathematical career is included. Several articles, which were directly influenced by the research of Donin and his colleagues, deal with invariant quantization, dynamical $R$-matrices, Poisson homogeneous spaces, and reflection equation algebras. The topics of other articles include Hecke symmetries, orbifolds, set-theoretic solutions to the pentagon equations, representations of quantum current algebras, unipotent crystals, the Springer resolution, the Fourier transform on Hopf algebras, and, as a change of pace, the combinatorics of smoothly knotted surfaces. The articles all contain important new contributions to their respective areas and will be of great interest to graduate students and research mathematicians interested in Hopf algebras, quantum groups, and applications. Information for our distributors: This book is copublished with Bar-Ilan University (Ramat-Gan, Israel).

Radon Transforms, Geometry, and Wavelets
  • Language: en
  • Pages: 282

Radon Transforms, Geometry, and Wavelets

This volume is based on two special sessions held at the AMS Annual Meeting in New Orleans in January 2007, and a satellite workshop held in Baton Rouge on January 4-5, 2007. It consists of invited expositions that together represent a broad spectrum of fields, stressing surprising interactions and connections between areas that are normally thought of as disparate. The main topics are geometry and integral transforms. On the one side are harmonic analysis, symmetric spaces,representation theory (the groups include continuous and discrete, finite and infinite, compact and non-compact), operator theory, PDE, and mathematical probability. Moving in the applied direction we encounter wavelets, ...

Almost Commuting Elements in Compact Lie Groups
  • Language: en
  • Pages: 153

Almost Commuting Elements in Compact Lie Groups

This text describes the components of the moduli space of conjugacy classes of commuting pairs and triples of elements in a compact Lie group. This description is in the extended Dynkin diagram of the simply connected cover, together with the co-root integers and the action of the fundamental group. In the case of three commuting elements, we compute Chern-Simons invariants associated to the corresponding flat bundles over the three-torus, and verify a conjecture of Witten which reveals a surprising symmetry involving the Chern-Simons invariants and the dimensions of the components of the moduli space.

Selberg Trace Formulae and Equidistribution Theorems for Closed Geodesics and Laplace
  • Language: en
  • Pages: 113

Selberg Trace Formulae and Equidistribution Theorems for Closed Geodesics and Laplace

This work is concerned with a pair of dual asymptotics problems on a finite-area hyperbolic surface. The first problem is to determine the distribution of closed geodesics in the unit tangent bundle. The second problem is to determine the distribution of eigenfunctions (in microlocal sense) in the unit tangent bundle.

Algebraic $K$-Theory, Commutative Algebra, and Algebraic Geometry
  • Language: en
  • Pages: 250

Algebraic $K$-Theory, Commutative Algebra, and Algebraic Geometry

In the mid-1960's, several Italian mathematicians began to study the connections between classical arguments in commutative algebra and algebraic geometry, and the contemporaneous development of algebraic K-theory in the US. These connections were exemplified by the work of Andreotti-Bombieri, Salmon, and Traverso on seminormality, and by Bass-Murthy on the Picard groups of polynomial rings. Interactions proceeded far beyond this initial point to encompass Chow groups of singular varieties, complete intersections, and applications of K-theory to arithmetic and real geometry. This volume contains the proceedings from a US-Italy Joint Summer Seminar, which focused on this circle of ideas. The conference, held in June 1989 in Santa Margherita Ligure, Italy, was supported jointly by the Consiglio Nazionale delle Ricerche and the National Science Foundation. The book contains contributions from some of the leading experts in this area.

On the Splitting of Invariant Manifolds in Multidimensional Near-Integrable Hamiltonian Systems
  • Language: en
  • Pages: 162

On the Splitting of Invariant Manifolds in Multidimensional Near-Integrable Hamiltonian Systems

Presents the problem of the splitting of invariant manifolds in multidimensional Hamiltonian systems, stressing the canonical features of the problem. This book offers introduction of a canonically invariant scheme for the computation of the splitting matrix.

Spinor Construction of Vertex Operator Algebras, Triality, and $E^{(1)}_8$
  • Language: en
  • Pages: 158

Spinor Construction of Vertex Operator Algebras, Triality, and $E^{(1)}_8$

The theory of vertex operator algebras is a remarkably rich new mathematical field which captures the algebraic content of conformal field theory in physics. Ideas leading up to this theory appeared in physics as part of statistical mechanics and string theory. In mathematics, the axiomatic definitions crystallized in the work of Borcherds and in Vertex Operator Algebras and the Monster, by Frenkel, Lepowsky, and Meurman. The structure of monodromies of intertwining operators for modules of vertex operator algebras yield braid group representations and leads to natural generalizations of vertex operator algebras, such as superalgebras and para-algebras. Many examples of vertex operator algeb...

Noether-Lefschetz Problems for Degeneracy Loci
  • Language: en
  • Pages: 154

Noether-Lefschetz Problems for Degeneracy Loci

Studies the cohomology of degeneracy loci. This title assumes that $E\otimes F DEGREES\vee$ is ample and globally generated, and that $\psi$ is a general homomorphism. In order to study the cohomology of $Z$, it considers the Grassmannian bundle $\pi\colon Y: =\mathbb{G}(f-r, F)\to X$ of $(f-r)$-dimensional linear subspaces of the fibre