You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
‘Network’ is a heavily overloaded term, so that ‘network analysis’ means different things to different people. Specific forms of network analysis are used in the study of diverse structures such as the Internet, interlocking directorates, transportation systems, epidemic spreading, metabolic pathways, the Web graph, electrical circuits, project plans, and so on. There is, however, a broad methodological foundation which is quickly becoming a prerequisite for researchers and practitioners working with network models. From a computer science perspective, network analysis is applied graph theory. Unlike standard graph theory books, the content of this book is organized according to methods for specific levels of analysis (element, group, network) rather than abstract concepts like paths, matchings, or spanning subgraphs. Its topics therefore range from vertex centrality to graph clustering and the evolution of scale-free networks. In 15 coherent chapters, this monograph-like tutorial book introduces and surveys the concepts and methods that drive network analysis, and is thus the first book to do so from a methodological perspective independent of specific application areas.
Biological Network Analysis: Trends, Approaches, Graph Theory, and Algorithms considers three major biological networks, including Gene Regulatory Networks (GRN), Protein-Protein Interaction Networks (PPIN), and Human Brain Connectomes. The book's authors discuss various graph theoretic and data analytics approaches used to analyze these networks with respect to available tools, technologies, standards, algorithms and databases for generating, representing and analyzing graphical data. As a wide variety of algorithms have been developed to analyze and compare networks, this book is a timely resource.
What does the Web look like? How can we find patterns, communities, outliers, in a social network? Which are the most central nodes in a network? These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are ...
Are all film stars linked to Kevin Bacon? Why do the stock markets rise and fall sharply on the strength of a vague rumour? How does gossip spread so quickly? Are we all related through six degrees of separation? There is a growing awareness of the complex networks that pervade modern society. We see them in the rapid growth of the internet, the ease of global communication, the swift spread of news and information, and in the way epidemics and financial crises develop with startling speed and intensity. This introductory book on the new science of networks takes an interdisciplinary approach, using economics, sociology, computing, information science and applied mathematics to address fundamental questions about the links that connect us, and the ways that our decisions can have consequences for others.
A new, counterintuitive theory for how social networks influence the spread of behavior New social movements, technologies, and public-health initiatives often struggle to take off, yet many diseases disperse rapidly without issue. Can the lessons learned from the viral diffusion of diseases improve the spread of beneficial behaviors and innovations? How Behavior Spreads presents over a decade of original research examining how changes in societal behavior—in voting, health, technology, and finance—occur and the ways social networks can be used to influence how they propagate. Damon Centola's startling findings show that the same conditions that accelerate the viral expansion of an epidemic unexpectedly inhibit the spread of behaviors. How Behavior Spreads is a must-read for anyone interested in how the theory of social networks can transform our world.
The Oxford Handbook of the Economics of Networks represents the frontier of research into how and why networks they form, how they influence behavior, how they help govern outcomes in an interactive world, and how they shape collective decision making, opinion formation, and diffusion dynamics. From a methodological perspective, the contributors to this volume devote attention to theory, field experiments, laboratory experiments, and econometrics. Theoretical work in network formation, games played on networks, repeated games, and the interaction between linking and behavior is synthesized. A number of chapters are devoted to studying social process mediated by networks. Topics here include ...
This wide-ranging and accessible book serves as a fascinating guide to the strategies and concepts that help us understand the boundaries between physics, on the one hand, and sociology, economics, and biology on the other. From cooperation and criticality to flock dynamics and fractals, the author addresses many of the topics belonging to the broad theme of complexity. He chooses excellent examples (requiring no prior mathematical knowledge) to illuminate these ideas and their implications. The lively style and clear description of the relevant models will appeal both to novices and those with an existing knowledge of the field.
An introductory guide with real-life examples on using AI to help homeless youth, diabetes patients, and other social welfare interventions.
This book constitutes the thoroughly refereed post-proceedings of the International Workshop on Statistical Network Analysis: Models, Issues, and New Directions held in Pittsburgh, PA, USA in June 2006 as associated event of the 23rd International Conference on Machine Learning, ICML 2006. It covers probabilistic methods for network analysis, paying special attention to model design and computational issues of learning and inference.
The power of mapping: principles for visualizing knowledge, illustrated by many stunning large-scale, full-color maps. Maps of physical spaces locate us in the world and help us navigate unfamiliar routes. Maps of topical spaces help us visualize the extent and structure of our collective knowledge; they reveal bursts of activity, pathways of ideas, and borders that beg to be crossed. This book, from the author of Atlas of Science, describes the power of topical maps, providing readers with principles for visualizing knowledge and offering as examples forty large-scale and more than 100 small-scale full-color maps. Today, data literacy is becoming as important as language literacy. Well-desi...