You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Study 79 contains a collection of papers presented at the Conference on Discontinuous Groups and Ricmann Surfaces at the University of Maryland, May 21-25, 1973. The papers, by leading authorities, deal mainly with Fuchsian and Kleinian groups, Teichmüller spaces, Jacobian varieties, and quasiconformal mappings. These topics are intertwined, representing a common meeting of algebra, geometry, and analysis.
This proceedings reports on some of the most recent advances on the interaction between Differential Geometry and Theoretical Physics, a very active and exciting area of contemporary research.The papers are grouped into the following four broad categories: Geometric Methods, Noncommutative Geometry, Quantum Gravity and Topological Quantum Field Theory. A few of the topics covered are Chern-Simons Theory and Generalizations, Knot Invariants, Models of 2D Gravity, Quantum Groups and Strings on Black Holes.
This textbook offers an accessible introduction to translation surfaces. Building on modest prerequisites, the authors focus on the fundamentals behind big ideas in the field: ergodic properties of translation flows, counting problems for saddle connections, and associated renormalization techniques. Proofs that go beyond the introductory nature of the book are deftly omitted, allowing readers to develop essential tools and motivation before delving into the literature. Beginning with the fundamental example of the flat torus, the book goes on to establish the three equivalent definitions of translation surface. An introduction to the moduli space of translation surfaces follows, leading int...
Presenting the proceedings of a recently held conference in Provo, Utah, this reference provides original research articles in several different areas of number theory, highlighting the Markoff spectrum.;Detailing the integration of geometric, algebraic, analytic and arithmetic ideas, Number Theory with an Emphasis on the Markoff Spectrum contains refereed contributions on: general problems of diophantine approximation; quadratic forms and their connections with automorphic forms; the modular group and its subgroups; continued fractions; hyperbolic geometry; and the lower part of the Markoff spectrum.;Written by over 30 authorities in the field, this book should be a useful resource for research mathematicians in harmonic analysis, number theory algebra, geometry and probability and graduate students in these disciplines.
Here is an unsurpassed resource-important accounts of a variety of dynamic systems topicsrelated to number theory. Twelve distinguished mathematicians present a rare complete analyticsolution of a geodesic quantum problem on a negatively curved surface ... and explicitdetermination of modular function growth near a real point .. . applications of number theoryto dynamical systems and applications of mathematical physics to number theory . ..tributes to the often-unheralded pioneers in the field ... an examination of completely integrableand exactly solvable physical models .. . and much more!Classical and Quantum Models and Arithmetic Problems is certainly a major source of information,advancing the studies of number theorists, algebraists, and mathematical physicistsinterested in complex mathematical properties of quantum field theory, statistical mechanics,and dynamic systems. Moreover, the volume is a superior source of supplementary readingfor graduate-level courses in dynamic systems and application of number theory .
This is an autobiography and an exposition on the contributions and personalities of many of the leading researchers in mathematics and physics with whom Dr Krishna Alladi, Professor of Mathematics at the University of Florida, has had personal interaction with for over six decades. Discussions of various aspects of the physics and mathematics academic professions are included.Part I begins with the author's unusual and frequent introductions as a young boy to scientific luminaries like Nobel Laureates Niels Bohr, Murray Gell-Mann, and Richard Feynman, in the company of his father, the scientist Alladi Ramakrishnan. Also in Part I is an exciting account of how the author started his research...
In this second edition of the MAA classic, exploration continues to be an essential component. More than 60 new exercises have been added, and the chapters on Infinite Summations, Differentiability and Continuity, and Convergence of Infinite Series have been reorganized to make it easier to identify the key ideas. A Radical Approach to Real Analysis is an introduction to real analysis, rooted in and informed by the historical issues that shaped its development. It can be used as a textbook, as a resource for the instructor who prefers to teach a traditional course, or as a resource for the student who has been through a traditional course yet still does not understand what real analysis is a...
This volume, which contains a good balance of research and survey papers, presents at look at some of the current development in this extraordinarily rich and vibrant area.
0 An extended introduction (starting p. 1) -- 1 Some preliminaries concerning interpretations, groups and [actual symbol not reproducible]-categoricity (starting p. 29) -- 2 A new reconstruction theorem for Boolean algebras (starting p. 43) -- 3 The completion and the Boolean algebra of a U-tree (starting p. 57) -- 4 The statement of the canonization and reconstruction theorems (starting p. 63) -- 5 The canonization of trees (starting p. 73) -- 6 The reconstruction of the Boolean algebra of a U-tree (starting p. 87) -- 7 The reconstruction of PT(Exp(M)) (starting p. 135) -- 8 Final reconstruction results (starting p. 153) -- 9 Observations, examples and discussion (starting p. 155) -- 10 Augmented trees (starting p. 169) -- 11 The reconstruction of [actual symbol not reproducible]-categorical trees (starting p. 205) -- 12 Nonisomorphic 1-homogeneous chains which have isomorphic automorphism groups (starting p. 243) -- Bibliography (starting p. 251) -- A list of notations and definitions (starting p. 253)