Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Functional Analysis
  • Language: en
  • Pages: 394

Functional Analysis

This book introduces functional analysis at an elementary level without assuming any background in real analysis, for example on metric spaces or Lebesgue integration. It focuses on concepts and methods relevant in applied contexts such as variational methods on Hilbert spaces, Neumann series, eigenvalue expansions for compact self-adjoint operators, weak differentiation and Sobolev spaces on intervals, and model applications to differential and integral equations. Beyond that, the final chapters on the uniform boundedness theorem, the open mapping theorem and the Hahn-Banach theorem provide a stepping-stone to more advanced texts. The exposition is clear and rigorous, featuring full and detailed proofs. Many examples illustrate the new notions and results. Each chapter concludes with a large collection of exercises, some of which are referred to in the margin of the text, tailor-made in order to guide the student digesting the new material. Optional sections and chapters supplement the mandatory parts and allow for modular teaching spanning from basic to honors track level.

Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy's 60th Birthday
  • Language: en
  • Pages: 409

Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy's 60th Birthday

This volume contains twenty contributions in the area of mathematical physics where Fritz Gesztesy made profound contributions. There are three survey papers in spectral theory, differential equations, and mathematical physics, which highlight, in particu

Introduction to Analytic and Probabilistic Number Theory
  • Language: en
  • Pages: 656

Introduction to Analytic and Probabilistic Number Theory

This book provides a self contained, thorough introduction to the analytic and probabilistic methods of number theory. The prerequisites being reduced to classical contents of undergraduate courses, it offers to students and young researchers a systematic and consistent account on the subject. It is also a convenient tool for professional mathematicians, who may use it for basic references concerning many fundamental topics. Deliberately placing the methods before the results, the book will be of use beyond the particular material addressed directly. Each chapter is complemented with bibliographic notes, useful for descriptions of alternative viewpoints, and detailed exercises, often leading...

Official Gazette of the United States Patent and Trademark Office
  • Language: en
  • Pages: 1512

Official Gazette of the United States Patent and Trademark Office

  • Type: Book
  • -
  • Published: 2002
  • -
  • Publisher: Unknown

None

Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality
  • Language: en
  • Pages: 494

Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality

Studying the relationship between the geometry, arithmetic and spectra of fractals has been a subject of significant interest in contemporary mathematics. This book contributes to the literature on the subject in several different and new ways. In particular, the authors provide a rigorous and detailed study of the spectral operator, a map that sends the geometry of fractal strings onto their spectrum. To that effect, they use and develop methods from fractal geometry, functional analysis, complex analysis, operator theory, partial differential equations, analytic number theory and mathematical physics.Originally, M L Lapidus and M van Frankenhuijsen 'heuristically' introduced the spectral o...

One-Parameter Semigroups for Linear Evolution Equations
  • Language: en
  • Pages: 609

One-Parameter Semigroups for Linear Evolution Equations

This book explores the theory of strongly continuous one-parameter semigroups of linear operators. A special feature of the text is an unusually wide range of applications such as to ordinary and partial differential operators, to delay and Volterra equations, and to control theory. Also, the book places an emphasis on philosophical motivation and the historical background.

Semigroups of Operators -Theory and Applications
  • Language: en
  • Pages: 338

Semigroups of Operators -Theory and Applications

  • Type: Book
  • -
  • Published: 2014-11-20
  • -
  • Publisher: Springer

Many results, both from semi group theory itself and from the applied sciences, are phrased in discipline-specific languages and hence are hardly known to a broader community. This volume contains a selection of lectures presented at a conference that was organised as a forum for all mathematicians using semi group theory to learn what is happening outside their own field of research. The collection will help to establish a number of new links between various sub-disciplines of semigroup theory, stochastic processes, differential equations and the applied fields. The theory of semigroups of operators is a well-developed branch of functional analysis. Its foundations were laid at the beginnin...

Positivity and Noncommutative Analysis
  • Language: en
  • Pages: 604

Positivity and Noncommutative Analysis

  • Type: Book
  • -
  • Published: 2019-08-09
  • -
  • Publisher: Springer

Capturing the state of the art of the interplay between positivity, noncommutative analysis, and related areas including partial differential equations, harmonic analysis, and operator theory, this volume was initiated on the occasion of the Delft conference in honour of Ben de Pagter's 65th birthday. It will be of interest to researchers in positivity, noncommutative analysis, and related fields. Contributions by Shavkat Ayupov, Amine Ben Amor, Karim Boulabiar, Qingying Bu, Gerard Buskes, Martijn Caspers, Jurie Conradie, Garth Dales, Marcel de Jeu, Peter Dodds, Theresa Dodds, Julio Flores, Jochen Glück, Jacobus Grobler, Wolter Groenevelt, Markus Haase, Klaas Pieter Hart, Francisco Hernánd...

A Course on Large Deviations with an Introduction to Gibbs Measures
  • Language: en
  • Pages: 335

A Course on Large Deviations with an Introduction to Gibbs Measures

This is an introductory course on the methods of computing asymptotics of probabilities of rare events: the theory of large deviations. The book combines large deviation theory with basic statistical mechanics, namely Gibbs measures with their variational characterization and the phase transition of the Ising model, in a text intended for a one semester or quarter course. The book begins with a straightforward approach to the key ideas and results of large deviation theory in the context of independent identically distributed random variables. This includes Cramér's theorem, relative entropy, Sanov's theorem, process level large deviations, convex duality, and change of measure arguments. D...

The Diversity and Beauty of Applied Operator Theory
  • Language: en
  • Pages: 506

The Diversity and Beauty of Applied Operator Theory

  • Type: Book
  • -
  • Published: 2018-04-27
  • -
  • Publisher: Springer

This book presents 29 invited articles written by participants of the International Workshop on Operator Theory and its Applications held in Chemnitz in 2017. The contributions include both expository essays and original research papers illustrating the diversity and beauty of insights gained by applying operator theory to concrete problems. The topics range from control theory, frame theory, Toeplitz and singular integral operators, Schrödinger, Dirac, and Kortweg-de Vries operators, Fourier integral operator zeta-functions, C*-algebras and Hilbert C*-modules to questions from harmonic analysis, Monte Carlo integration, Fibonacci Hamiltonians, and many more. The book offers researchers in operator theory open problems from applications that might stimulate their work and shows those from various applied fields, such as physics, engineering, or numerical mathematics how to use the potential of operator theory to tackle interesting practical problems.