You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This thesis considers networked discrete-event systems. The overall system is a network of subsystems, each of which includes a technical process modelled by an I/O automaton together with a controller and a network unit. These subsystems are interconnected by physical couplings and digital communication links. An important characteristic of the networked discreteevent systems is the partial autonomy of the subsystems, which is reflected by the fact that each subsystem solves its local tasks individually. Cooperation among the subsystems becomes necessary if physical couplings or control specifications have to be resolved by two or more subsystems in order to satisfy the local tasks. Hence, ...
The analysis and design of control strategies for the synchronization of subsystems that are coupled over communication networks is the topic of this thesis. Typically, synchronization problems deal with the asymptotic behavior of networked multi-agent systems, where it is required that the states of the subsystems follow a common trajectory as the time approaches infinity. In contrast, this thesis focuses on strategies that do not only fulfill the requirement on asymptotic synchronization but also requirements on the transient behavior of networked multi-agent systems. Motivated by a growing number of applications where subsystems exchange their information by means of modern communication systems, the limits on the achievable performance of synchronization are studied for large teams of autonomous subsystems. In particular, control strategies that do not require any centralized coordination of the subsystems are developed.
Fault-tolerant control aims at a gradual shutdown response in automated systems when faults occur. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults, which bring about sudden shutdowns and loss of availability. The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process that can be used to ensure fault tolerance. It also introduces design methods suitable for diagnostic systems and fault-t...
This thesis presents a novel distributed control paradigm for networked control systems in which the local control units of the subsystems exchange information, whenever this is necessary to fulfill an overall control aim. The local control units act in a self-organized way, which means that they adapt their communication structure depending on the current situation of the subsystems based on locally available information only. A new controller structure is proposed. The local control units are divided into three components fulfilling universal tasks to generate a situation-dependent communication structure: The feedback unit performs a local feedback by using local measurements to fulfill b...
This thesis proposes a method that plans trajectories for autonomous agents to enable them to fulfil different tasks while ensuring the collision-free movement. The agents are locally controlled and connected over an unreliable communication network that may induce packet losses and transmission delays. Further sensors e.g. for a distance measurement are not used and communication should only be invoked if it is necessary to avoid a collision. The basic problem occurs for two agents. The first agent can change its trajectory at any time without regard to the second agent, which has to ensure the collision avoidance. To this aim it adapts its trajectory based only on local data and communicat...
In the networked control of interconnected systems, the communication network is primarily used for the exchange of measurements amongst the control stations. Plug-and-play control extends the usage of this network towards the exchange of models with the aim to automatically design control stations at runtime. Therefore, every subsystem is equipped with a design agent that initially knows only the model of its subsystem. To design a control station by a design agent, first, a suitable model of the subsystem that interacts with other subsystems has to be set up. Second, local design conditions have to be found that guarantee the adherence of the global control aim. If the designed control sta...
This thesis concerns the cooperative control of networked vehicles. Autonomous driving is a topic that is currently being discussed with great interest from researchers, vehicle manufacturers and the corresponding media. Future autonomous vehicles should bring the passengers to their desired destination while improving both safety and efficiency compared to current human-driven vehicles. The inherent problem of all vehicle coordination tasks is to guarantee collision avoidance in every situation. To this end, autonomous vehicles have to share information with each other in order to perform traffic manoeuvres that require the cooperation of multiple vehicles. The fundamental problem of vehicl...
This thesis deals with active fault-tolerant control of discrete event systems modeled by deterministic Input/Output (I/O) automata. Active fault-tolerant control realizes three operating modes - nominal control, fault diagnosis and controller reconfiguration. A new fault-tolerant controller which autonomously ensures the fulfillment of the control aim, both, in the faultless and the faulty case is developed. The control aim is to steer the plant into a desired final state while guaranteeing the avoidance of illegal transitions. Corresponding to the three operating modes, the proposed integrated fault-tolerant controller consists of a tracking controller, a diagnostic unit and a reconfigurat...
Diese Dissertation beschäftigt sich mit Multiagentensystemen, bei denen mehrere Teilsysteme (Agenten) eine gemeinsame Regelungsaufgabe erfüllen sollen. Es werden Methoden zum Entwurf vernetzter Regler erarbeitet, welche die Teilsysteme asymptotisch einer gemeinsamen Trajektorie folgen lassen (asymptotische Synchronisation). Anwendungsbeispiele zeigen, dass die Synchronisationsaufgabe den folgenden praktischen Randbedingungen unterliegt: – Viele Teilsysteme müssen miteinander kooperieren. – Die vernetzte Regelung enthält keinen Koordinator, so dass die Regelungsaufgabe durch die Agenten gelöst werden muss. – Multiagentensysteme unterliegen Störungen und Modellunsicherheiten. – F...
Dieses Lehrbuch gibt eine Einführung in die Beschreibung und Analyse ereignisdiskreter Systeme. Es zeigt, wie man dynamische Systeme mit wertdiskreten Signalen durch Automaten, Markovketten und Petrinetze darstellen und analysieren kann. Die behandelten Modellformen bilden die Grundlage für vielfältige Beschreibungsmittel, die heute in der Elektronik für die Spezifikation und die Modellierung von Schaltkreisen, in der Automatisierungstechnik für die Analyse diskreter Systeme und den Steuerungsentwurf oder in der Informatik für die Definition von Berechnungsmodellen und die Analyse und Übersetzung von Programmen verwendet werden. Beispiele aus den genannten sowie weiteren Gebieten zeig...