You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. The book, written in an accessible manner, presents a comprehensive introduction to this area of research, as well as its most recent results and developments.
This book provides an introduction to and survey of recent developments in pseudo-Riemannian geometry, including applications in mathematical physics, by leading experts in the field. Topics covered are: Classification of pseudo-Riemannian symmetric spaces Holonomy groups of Lorentzian and pseudo-Riemannian manifolds Hypersymplectic manifolds Anti-self-dual conformal structures in neutral signature and integrable systems Neutral Kahler surfaces and geometric optics Geometry and dynamics of the Einstein universe Essential conformal structures and conformal transformations in pseudo-Riemannian geometry The causal hierarchy of spacetimes Geodesics in pseudo-Riemannian manifolds Lorentzian symme...
The text that comprises this volume is a collection of surveys and original works from experts in the fields of algebraic number theory, analytic number theory, harmonic analysis, and hyperbolic geometry. A portion of the collected contributions have been developed from lectures given at the "International Conference on the Occasion of the 60th Birthday of S. J. Patterson", held at the University Göttingen, July 27-29 2009. Many of the included chapters have been contributed by invited participants. This volume presents and investigates the most recent developments in various key topics in analytic number theory and several related areas of mathematics. The volume is intended for graduate students and researchers of number theory as well as applied mathematicians interested in this broad field.
The construction of the p-adic local Langlands correspondence for GL2(Qp) uses in an essential way Fontaine's theory of cyclotomic (φ,Γ)-modules. Here cyclotomic means that Γ=Gal(Qp(μp∞)/Qp) is the Galois group of the cyclotomic extension of Qp. In order to generalize the p-adic local Langlands correspondence to GL2(L), where L is a finite extension of Qp, it seems necessary to have at our disposal a theory of Lubin-Tate (φ,Γ)-modules. Such a generalization has been carried out, to some extent, by working over the p-adic open unit disk, endowed with the action of the endomorphisms of a Lubin-Tate group. The main idea of this article is to carry out a Lubin-Tate generalization of the theory of cyclotomic (φ,Γ)-modules in a different fashion. Instead of the p-adic open unit disk, the authors work over a character variety that parameterizes the locally L-analytic characters on oL. They study (φ,Γ)-modules in this setting and relate some of them to what was known previously.
In this paper, the authors show the existence of the first non trivial family of classical global solutions of the inviscid surface quasi-geostrophic equation.
Presents 15 papers treating discrete groups as they occur in areas such as algebra, analysis, geometry, number theory and topology. This work helps graduate students and researchers to understand the structures and applications of discrete subgroups of Lie groups and locally symmetric spaces.
This book introduces readers to the living topics of Riemannian Geometry and details the main results known to date. The results are stated without detailed proofs but the main ideas involved are described, affording the reader a sweeping panoramic view of almost the entirety of the field. From the reviews "The book has intrinsic value for a student as well as for an experienced geometer. Additionally, it is really a compendium in Riemannian Geometry." --MATHEMATICAL REVIEWS
Optimization in Industry comprises a collection of papers presented at the third US United Engineering Foundation's 'Optimization in Industry' Conference. The main thrust of this, the third conference of the series is related to engineering optimization including both manufacture and parametric design. The papers included explore the relationships between well-established deterministic optimization methods and the emerging stochastic and mainly population-based search and optimization algorithms. A mix of approaches across a wide range of engineering disciplines is included. It illustrates the manner in which various techniques can be utilised either in a stand-alone manner or within hybrid ...
This book had its origins in the NATO Advanced Study Institute (ASI) held in Ohrid, Macedonia, in 2014. The focus of this ASI was the arithmetic of superelliptic curves and their application in different scientific areas, including whether all the applications of hyperelliptic curves, such as cryptography, mathematical physics, quantum computation and diophantine geometry, can be carried over to the superelliptic curves. Additional papers have been added which provide some background for readers who were not at the conference, with the intention of making the book logically more complete and easier to read, but familiarity with the basic facts of algebraic geometry, commutative algebra and number theory are assumed. The book is divided into three sections. The first part deals with superelliptic curves with regard to complex numbers, the automorphisms group and the corresponding Hurwitz loci. The second part of the book focuses on the arithmetic of the subject, while the third addresses some of the applications of superelliptic curves.
This volume contains the proceedings of the conference Representation Theory XVI, held from June 25–29, 2019, in Dubrovnik, Croatia. The articles in the volume address selected aspects of representation theory of reductive Lie groups and vertex algebras, and are written by prominent experts in the field as well as junior researchers. The three main topics of these articles are Lie theory, number theory, and vertex algebras.