You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The contributions in this volume are written by the foremost international researchers and practitioners in the GP arena. They examine the similarities and differences between theoretical and empirical results on real-world problems. The text explores the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application. Topics include: FINCH: A System for Evolving Java, Practical Autoconstructive Evolution, The Rubik Cube and GP Temporal Sequence Learning, Ensemble classifiers: AdaBoost and Orthogonal Evolution of Teams, Self-modifying Cartesian GP, Abstract Expression Grammar Symbolic Regression, Age-Fitness Pareto Optimization, Scalable Symbolic Regression by Continuous Evolution, Symbolic Density Models, GP Transforms in Linear Regression Situations, Protein Interactions in a Computational Evolution System, Composition of Music and Financial Strategies via GP, and Evolutionary Art Using Summed Multi-Objective Ranks. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results in GP .
Genetic Programming Theory and Practice VI was developed from the sixth workshop at the University of Michigan’s Center for the Study of Complex Systems to facilitate the exchange of ideas and information related to the rapidly advancing field of Genetic Programming (GP). Contributions from the foremost international researchers and practitioners in the GP arena examine the similarities and differences between theoretical and empirical results on real-world problems. The text explores the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application. These contributions address several significant interdependent themes which emerged from this year’s workshop, including: (1) Making efficient and effective use of test data. (2) Sustaining the long-term evolvability of our GP systems. (3) Exploiting discovered subsolutions for reuse. (4) Increasing the role of a Domain Expert.