You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book arises as the natural continuation of the International Spring School "Advances and Challenges in Space-Time modelling of Natural Events," which took place in Toledo (Spain) in March 2010. This Spring School above all focused on young researchers (Master students, PhD students and post-doctoral researchers) in academics, extra-university research and the industry who are interested in learning about recent developments, new methods and applications in spatial statistics and related areas, and in exchanging ideas and findings with colleagues.
Extreme Value Modeling and Risk Analysis: Methods and Applications presents a broad overview of statistical modeling of extreme events along with the most recent methodologies and various applications. The book brings together background material and advanced topics, eliminating the need to sort through the massive amount of literature on the subje
This book contributes to the empirical literature on economic and human development from five different perspectives: the first chapter provides a new statistical test for bimodality of densities with an application to income data. The second chapter analyzes the worlds cross-country distribution of income and challenges the so called Twin Peaks-claim. The third chapter focuses on the world income distribution and resulting implications for poverty reduction, pro-poor growth and the evolution of global inequality. The fourth chapter estimates the welfare effects of recently negotiated Economic Partnership Agreements between the EU and African countries. Finally, the fifth chapter investigates whether democracy leads to higher levels of health and education.
Developing techniques for assessing various risks and calculating probabilities of ruin and survival are exciting topics for mathematically-inclined academics. For practicing actuaries and financial engineers, the resulting insights have provided enormous opportunities but also created serious challenges to overcome, thus facilitating closer cooperation between industries and academic institutions. In this book, several renown researchers with extensive interdisciplinary research experiences share their thoughts that, in one way or another, contribute to the betterment of practice and theory of decision making under uncertainty. Behavioral, cultural, mathematical, and statistical aspects of risk assessment and modelling have been explored, and have been often illustrated using real and simulated data. Topics range from financial and insurance risks to security-type risks, from one-dimensional to multi- and even infinite-dimensional risks. The articles in the book were written with a broad audience in mind and should provide enjoyable reading for those with university level degrees and/or those who have studied for accreditation by various actuarial and financial societies.
Space, structure, and randomness: these are the three key concepts underlying Georges Matheron’s scientific work. He first encountered them at the beginning of his career when working as a mining engineer, and then they resurfaced in fields ranging from meteorology to microscopy. What could these radically different types of applications possibly have in common? First, in each one only a single realisation of the phenomenon is available for study, but its features repeat themselves in space; second, the sampling pattern is rarely regular, and finally there are problems of change of scale. This volume is divided in three sections on random sets, geostatistics and mathematical morphology. Th...
Because of its potential to ...predict the unpredictable,... extreme value theory (EVT) and methodology is currently receiving a great deal of attention from statistical and mathematical researchers. This book brings together world-recognized authorities in their respective fields to provide expository chapters on the applications, use, and theory
Spatial Data Science introduces fundamental aspects of spatial data that every data scientist should know before they start working with spatial data. These aspects include how geometries are represented, coordinate reference systems (projections, datums), the fact that the Earth is round and its consequences for analysis, and how attributes of geometries can relate to geometries. In the second part of the book, these concepts are illustrated with data science examples using the R language. In the third part, statistical modelling approaches are demonstrated using real world data examples. After reading this book, the reader will be well equipped to avoid a number of major spatial data analy...
This volume covers topics ranging from pure and applied mathematics to pedagogical issues in mathematics. There are papers in mathematical biology, differential equations, difference equations, dynamical systems, orthogonal polynomials, topology, calculus reform, algebra, and numerical analysis. Most of the papers include new, interesting results that are at the cutting edge of the respective subjects. However, there are some papers of an expository nature.