You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Endocytosis is a fundamental cellular process by means of which cells internalize extracellular and plasma membrane cargos for recycling or degradation. It is important for the establishment and maintenance of cell polarity, subcellular signaling and uptake of nutrients into specialized cells, but also for plant cell interactions with pathogenic and symbiotic microbes. Endocytosis starts by vesicle formation at the plasma membrane and progresses through early and late endosomal compartments. In these endosomes cargo is sorted and it is either recycled back to the plasma membrane, or degraded in the lytic vacuole. This book presents an overview of our current knowledge of endocytosis in plants with a main focus on the key molecules undergoing and regulating endocytosis. It also provides up to date methodological approaches as well as principles of protein, structural lipid, sugar and microbe internalization in plant cells. The individual chapters describe clathrin-mediated and fluid-phase endocytosis, as well as flotillin-mediated endocytosis and internalization of microbes. The book was written for a broad spectrum of readers including students, teachers and researchers.
D.G. Evans, R.C.T. Slade: Structural Aspects of Layered Double Hydroxides.- J. He, M. Wei, B. Li, Y. Kang, D.G. Evans, X. Duan: Preparation of Layered Double Hydroxides.- C. Taviot-Gueho, F. Leroux: In Situ Polymerization and Intercalation of Polymers in Layered Double Hydroxides.- G.R. Williams, A.I. Khan, D. O'Hare: Mechanistic and Kinetic Studies of Guest Ion Intercalation into Layered Double Hydroxides Using Time-Resolved, In-Situ X-Ray Powder Diffraction.- F. Li, X. Duan: Applications of Layered Double Hydroxides
This book provides an overview of the design, synthesis, and characterization of different photoactive hybrid organic-inorganic materials, based on the combination of mainly organic molecules and inorganic nanostructures, tackling their uses in different scientific fields from photonics to biomedicine. There are many examples extensively describing how the confinement of organic compounds (i.e. chromophores, photochromic molecules or photoreactants), or other photoactive compounds (i.e.metal clusters) into several microporous systems can modulate the photophysical properties and photochemical reactions leading to interesting applications. Among (ordered)-hosts, different systems of diverse nature are widely used, such as the, the 1D- or 3D- channels of zeolitic frameworks, interlayer space of 2D-clays, the organic nanospace of curcubituril and cyclodextrins or the organo-inorganic porous crystalline MOFs systems. This volume highlights the advances of these photoactive materials and aims to be an inspiration for researchers working in materials science and photochemistry, including chemists, material engineers, physicists, biologists, and medical researchers.
This book is concerned with compound semiconductor bulk materials, and has been written for students, researchers and engineers in material science and device fabrication. It provides the elementary and intermediate knowledge of compound semiconductor bulk materials necessary for entry into this field. The first volume described the physical properties, crystal growth technologies, principles of crystal growth, various defects in crystals, characterization techniques and applications, and reviewed various III-V and II-V compound semiconductor materials. In this second volume, other materials are reviewed, including those that have recently received attention such as GaN, AlN, SiC and ZnO for optical and electronic devices.
This volume disseminates the most recent advances in understanding of the molecular structure, transport mechanism, and regulatory properties of the sodium/potassium adenosine triphosphatase. Recent knowledge gained from other transport ATPases is incorporated as well. The volume also provides contributions from crystallographers, cryoelectronmicroscopists, biochemists, cell biologists, biophysicists, physiologists, and pharmacologists.
The book examines environmental issues and their solutions with advancements in biotechnology and nanotechnology. This book will focus on environmental friendly waste management, wastewater treatment, and utilization of wastes for energy. As humanity is struggling for clean air, water and even contaminant free food, our society must ponder the condition of environment. This book covers a variety of environmental issues and how they could be solved through innovations in science, engineering and technology. The authors examine the use of biotechnological methods to remediate wastewater, toxic organic compounds and sludge management problems. The topics include different research disciplines s...