Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Introduction to Statistical Machine Learning
  • Language: en
  • Pages: 535

Introduction to Statistical Machine Learning

Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials. Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental ...

Density Ratio Estimation in Machine Learning
  • Language: en
  • Pages: 343

Density Ratio Estimation in Machine Learning

This book introduces theories, methods and applications of density ratio estimation, a newly emerging paradigm in the machine learning community.

Statistical Reinforcement Learning
  • Language: en
  • Pages: 206

Statistical Reinforcement Learning

  • Type: Book
  • -
  • Published: 2015-03-16
  • -
  • Publisher: CRC Press

Reinforcement learning (RL) is a framework for decision making in unknown environments based on a large amount of data. Several practical RL applications for business intelligence, plant control, and gaming have been successfully explored in recent years. Providing an accessible introduction to the field, this book covers model-based and model-free approaches, policy iteration, and policy search methods. It presents illustrative examples and state-of-the-art results, including dimensionality reduction in RL and risk-sensitive RL. The book provides a bridge between RL and data mining and machine learning research.

Machine Learning in Non-Stationary Environments
  • Language: en
  • Pages: 279

Machine Learning in Non-Stationary Environments

  • Type: Book
  • -
  • Published: 2012-03-30
  • -
  • Publisher: MIT Press

Theory, algorithms, and applications of machine learning techniques to overcome “covariate shift” non-stationarity. As the power of computing has grown over the past few decades, the field of machine learning has advanced rapidly in both theory and practice. Machine learning methods are usually based on the assumption that the data generation mechanism does not change over time. Yet real-world applications of machine learning, including image recognition, natural language processing, speech recognition, robot control, and bioinformatics, often violate this common assumption. Dealing with non-stationarity is one of modern machine learning's greatest challenges. This book focuses on a spec...

Machine Learning from Weak Supervision
  • Language: en
  • Pages: 315

Machine Learning from Weak Supervision

  • Type: Book
  • -
  • Published: 2022-08-23
  • -
  • Publisher: MIT Press

Fundamental theory and practical algorithms of weakly supervised classification, emphasizing an approach based on empirical risk minimization. Standard machine learning techniques require large amounts of labeled data to work well. When we apply machine learning to problems in the physical world, however, it is extremely difficult to collect such quantities of labeled data. In this book Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakai and Gang Niu present theory and algorithms for weakly supervised learning, a paradigm of machine learning from weakly labeled data. Emphasizing an approach based on empirical risk minimization and drawing on state-of-the-art research in weakly su...

Composing Fisher Kernels from Deep Neural Models
  • Language: en
  • Pages: 69

Composing Fisher Kernels from Deep Neural Models

  • Type: Book
  • -
  • Published: 2018-08-23
  • -
  • Publisher: Springer

This book shows machine learning enthusiasts and practitioners how to get the best of both worlds by deriving Fisher kernels from deep learning models. In addition, the book shares insight on how to store and retrieve large-dimensional Fisher vectors using feature selection and compression techniques. Feature selection and feature compression are two of the most popular off-the-shelf methods for reducing data’s high-dimensional memory footprint and thus making it suitable for large-scale visual retrieval and classification. Kernel methods long remained the de facto standard for solving large-scale object classification tasks using low-level features, until the revival of deep models in 200...

Variational Bayesian Learning Theory
  • Language: en
  • Pages: 561

Variational Bayesian Learning Theory

This introduction to the theory of variational Bayesian learning summarizes recent developments and suggests practical applications.

Handbook of Computational Statistics
  • Language: en
  • Pages: 1180

Handbook of Computational Statistics

The Handbook of Computational Statistics - Concepts and Methods (second edition) is a revision of the first edition published in 2004, and contains additional comments and updated information on the existing chapters, as well as three new chapters addressing recent work in the field of computational statistics. This new edition is divided into 4 parts in the same way as the first edition. It begins with "How Computational Statistics became the backbone of modern data science" (Ch.1): an overview of the field of Computational Statistics, how it emerged as a separate discipline, and how its own development mirrored that of hardware and software, including a discussion of current active researc...

Machine and Deep Learning Algorithms and Applications
  • Language: en
  • Pages: 107

Machine and Deep Learning Algorithms and Applications

This book introduces basic machine learning concepts and applications for a broad audience that includes students, faculty, and industry practitioners. We begin by describing how machine learning provides capabilities to computers and embedded systems to learn from data. A typical machine learning algorithm involves training, and generally the performance of a machine learning model improves with more training data. Deep learning is a sub-area of machine learning that involves extensive use of layers of artificial neural networks typically trained on massive amounts of data. Machine and deep learning methods are often used in contemporary data science tasks to address the growing data sets a...

Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
  • Language: en
  • Pages: 867

Medical Image Computing and Computer Assisted Intervention – MICCAI 2020

The seven-volume set LNCS 12261, 12262, 12263, 12264, 12265, 12266, and 12267 constitutes the refereed proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, held in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic. The 542 revised full papers presented were carefully reviewed and selected from 1809 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: machine learning methodologies Part II: image reconstruction; prediction and diagnosis; cross-domain methods and reconstruction; domain adaptation; machine learning applica...