Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Number Theory
  • Language: en
  • Pages: 243

Number Theory

None

Inverse Problems in the Theory of Small Oscillations
  • Language: en
  • Pages: 170

Inverse Problems in the Theory of Small Oscillations

Inverse problems of spectral analysis deal with the reconstruction of operators of the specified form in Hilbert or Banach spaces from certain of their spectral characteristics. An interest in spectral problems was initially inspired by quantum mechanics. The main inverse spectral problems have been solved already for Schrödinger operators and for their finite-difference analogues, Jacobi matrices. This book treats inverse problems in the theory of small oscillations of systems with finitely many degrees of freedom, which requires finding the potential energy of a system from the observations of its oscillations. Since oscillations are small, the potential energy is given by a positive definite quadratic form whose matrix is called the matrix of potential energy. Hence, the problem is to find a matrix belonging to the class of all positive definite matrices. This is the main difference between inverse problems studied in this book and the inverse problems for discrete analogues of the Schrödinger operators, where only the class of tridiagonal Hermitian matrices are considered.

Unramified Brauer Group and Its Applications
  • Language: en
  • Pages: 201

Unramified Brauer Group and Its Applications

This book is devoted to arithmetic geometry with special attention given to the unramified Brauer group of algebraic varieties and its most striking applications in birational and Diophantine geometry. The topics include Galois cohomology, Brauer groups, obstructions to stable rationality, Weil restriction of scalars, algebraic tori, the Hasse principle, Brauer-Manin obstruction, and étale cohomology. The book contains a detailed presentation of an example of a stably rational but not rational variety, which is presented as series of exercises with detailed hints. This approach is aimed to help the reader understand crucial ideas without being lost in technical details. The reader will end up with a good working knowledge of the Brauer group and its important geometric applications, including the construction of unirational but not stably rational algebraic varieties, a subject which has become fashionable again in connection with the recent breakthroughs by a number of mathematicians.

Iwasawa Theory 2012
  • Language: en
  • Pages: 487

Iwasawa Theory 2012

  • Type: Book
  • -
  • Published: 2014-12-08
  • -
  • Publisher: Springer

This is the fifth conference in a bi-annual series, following conferences in Besancon, Limoges, Irsee and Toronto. The meeting aims to bring together different strands of research in and closely related to the area of Iwasawa theory. During the week before the conference in a kind of summer school a series of preparatory lectures for young mathematicians was provided as an introduction to Iwasawa theory. Iwasawa theory is a modern and powerful branch of number theory and can be traced back to the Japanese mathematician Kenkichi Iwasawa, who introduced the systematic study of Z_p-extensions and p-adic L-functions, concentrating on the case of ideal class groups. Later this would be generalize...

Iwasawa Theory and Its Perspective, Volume 1
  • Language: en
  • Pages: 167

Iwasawa Theory and Its Perspective, Volume 1

Iwasawa theory began in the late 1950s with a series of papers by Kenkichi Iwasawa on ideal class groups in the cyclotomic tower of number fields and their relation to $p$-adic $L$-functions. The theory was later generalized by putting it in the context of elliptic curves and modular forms. The main motivation for writing this book was the need for a total perspective of Iwasawa theory that includes the new trends of generalized Iwasawa theory. Another motivation of this book is an update of the classical theory for class groups taking into account the changed point of view on Iwasawa theory. The goal of this first part of the two-part publication is to explain the theory of ideal class groups, including its algebraic aspect (the Iwasawa class number formula), its analytic aspect (Leopoldt–Kubota $L$-functions), and the Iwasawa main conjecture, which is a bridge between the algebraic and the analytic aspects. The second part of the book will be published as a separate volume in the same series, Mathematical Surveys and Monographs of the American Mathematical Society.

Macromolecule-Metal Complexes (MMC-8)
  • Language: en
  • Pages: 304

Macromolecule-Metal Complexes (MMC-8)

The IUPAC 8th International Symposium on Macromolecule-Metal Complexes (MMC-8 Tokyo) was held at the International Conference Center of Waseda University, Tokyo in September 1999. Topic areas presented included several basic and applied topics in the field of advanced MMC such as preparation, characterization and fundamental aspects, macromolecules for advanced technologies including the sub-topics of electron- and ion conductors, separation, adsorption, transport of gas molecules, electronic-, magnetic-, photonic properties, catalysis and photocatalysis, liquid crystals, and biological-, medical- and environmental use.

Iwasawa Theory and Its Perspective, Volume 2
  • Language: en
  • Pages: 228

Iwasawa Theory and Its Perspective, Volume 2

Iwasawa theory began in the late 1950s with a series of papers by Kenkichi Iwasawa on ideal class groups in the cyclotomic tower of number fields and their relation to $p$-adic $L$-functions. The theory was later generalized by putting it in the context of elliptic curves and modular forms. The main motivation for writing this book was the need for a total perspective of Iwasawa theory that includes the new trends of generalized Iwasawa theory. Another motivation is to update the classical theory for class groups, taking into account the changed point of view on Iwasawa theory. The goal of this second part of the three-part publication is to explain various aspects of the cyclotomic Iwasawa theory of $p$-adic Galois representations.

Local Fields and Their Extensions: Second Edition
  • Language: en
  • Pages: 362

Local Fields and Their Extensions: Second Edition

This book offers a modern exposition of the arithmetical properties of local fields using explicit and constructive tools and methods. It has been ten years since the publication of the first edition, and, according to Mathematical Reviews, 1,000 papers on local fields have been published during that period. This edition incorporates improvements to the first edition, with 60 additional pages reflecting several aspects of the developments in local number theory. The volume consists of four parts: elementary properties of local fields, class field theory for various types of local fields and generalizations, explicit formulas for the Hilbert pairing, and Milnor -groups of fields and of local ...

On Refined Conjectures of Birch and Swinnerton-Dyer Type for Hasse–Weil–Artin $L$-Series
  • Language: en
  • Pages: 168
Proceedings of the Symposium on New Sealed Rechargeable Batteries and Supercapacitors
  • Language: en
  • Pages: 548