You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The search for a theory of quantum gravity is one of the most important and fascinating problems in modern theoretical physics. While we do not have yet a complete theory of quantum gravity, significant advancements have been done in the past decades. In this handbook, every section is dedicated to a specific approach towards a theory of quantum gravity and is edited by the leading experts in the field. This book represents both a valuable resource for graduate students and an important reference for researchers in quantum gravity.
This book constitutes the refereed post-conference proceedings of 13 workshops held at the 33rd International ISC High Performance 2018 Conference, in Frankfurt, Germany, in June 2018: HPC I/O in the Data Center, HPC-IODC 2018; Workshop on Performance and Scalability of Storage Systems, WOPSSS 2018; 13th Workshop on Virtualization in High-Performance Cloud Computing, VHPC 2018; Third International Workshop on In Situ Visualization, WOIV 2018; 4th International Workshop on Communication Architectures for HPC, Big Data, Deep Learning and Clouds at Extreme Scale, ExaComm 2018; International Workshop on OpenPOWER for HPC, IWOPH 2018; IXPUG Workshop: Many-Core Computing on Intel Processors; Works...
The book addresses aspects of QCD which are related to its underlying structure as a field theory and to its mechanisms. Perturbative expansions do not work at large distances for QCD: the hadron spectrum, the confinement of colour, its deconfinement at high temperatures and the breaking of chiral symmetry all need nonperturbative methods of analysis. Sum rules, chiral perturbation theory and the formulation of QCD on a lattice are some of the tools used to test models, like the stochastic vacuum, the instanton liquid or the consideration of monopoles in the vacuum to produce dual superconductivity and confinement. The work covers different points of view and critical comparison between the different approaches. It can be considered a good reference text.
This book offers the unique possibility of tackling the problem of hadronic deconfinement from different perspectives. After general introductions to the physical issues, from both the theoretical and the experimental point of view, the book presents the most recent expertise on field theory approaches to the QCD phase diagram, many-body techniques and applications, the dynamics of phase transitions, and phenomenological analysis of relativistic heavy ion collisions. One of the major goals of this book is to promote interchange among those fields of research, which have traditionally been cultivated by different communities of physicists. The contributions in the book help in obtaining deep comprehension of this new state of matter, a system of deconfined quarks and gluons. At the same time the book offers a few examples of how the seeds of the deconfined state are looked for in the phenomenological analysis of the observables measured in relativistic heavy ion collisions. The main topics are dealt with in a pedagogical style, suitable for beginners as well as experienced researchers.
Numerical Methods for Scientists and Engineers: With Pseudocodes is designed as a primary textbook for a one-semester course on Numerical Methods for sophomore or junior-level students. It covers the fundamental numerical methods required for scientists and engineers, as well as some advanced topics which are left to the discretion of instructors. The objective of the text is to provide readers with a strong theoretical background on numerical methods encountered in science and engineering, and to explain how to apply these methods to practical, real-world problems. Readers will also learn how to convert numerical algorithms into running computer codes. Features: Numerous pedagogic features ...
242 solved problems of several degrees of difficulty in nonrelativistic Quantum Mechanics, ranging from the themes of the crisis of classical physics, through the achievements in the framework of modern atomic physics, down to the still alive, more intriguing aspects connected e.g. with the EPR paradox, the Aharonov--Bohm effect, quantum teleportation.
This textbook is based on a mixture of simplified institutional theory and solved problems. The choice has been to limit the attention to key concepts and to the most typical aspects of atoms, molecules and solids, looking at the basic "structural" aspects without dealing in detail with the properties originating from them. The problems are entangled to the formal presentation of the arguments, being designed as an intrinsic part of the pathway the student should move by in order to grasp the key concepts.
Contents: Basic Concepts and Consequences of Stochastic Vacuum Model (H G Dosch)Variational Approximations for Correlation Functions in Quantum Field Theories (C Martin)SU(2) Gauge Theory in Covariant (Maximal) Abelian Gauges (M Schaden)The Vacuum Wave Function in Supersymmetric Matrix Theory (C M Sommerfield)HERA Results on Elastic Hadronic and Sub-Hadronic Diffraction (G Knies)Deriving Effective Transport Equations for Non-Abelian Plasmas (D F Litim)Aspects of Non-Commutativity in ADS/CFT (A Jevicki)Thermal Field Theory in Equilibrium (J O Andersen)Puzzling Aspects of Hot Quantum Fields (T Grandou)DIS Results from HERA (C M Ginsburg)Electroproduction of Vector Mesons (T Teubner)New Developments in Cosmology (J W Moffat)Heavy-Light Physics from Lattice NRQCD (T Onogi)Non-Relativistic Effective Theory for Perturbative Heavy Quark-Antiquark Systems (A H Hoang)The Spin Dependence of Swift Proton Collisions (N H Buttimore)Numerical Investigation of Domain-Wall QCD on CP-PACS (S Aoki)When is It Possible to Use Perturbation Technique in Field Theory? (T N Truong)and other papers Readership: Researchers in high energy physics. Keywords:
These notes are designed as a text book for a course on the Modern Physics Theory for undergraduate students. The purpose is providing a rigorous and self-contained presentation of the simplest theoretical framework using elementary mathematical tools. A number of examples of relevant applications and an appropriate list of exercises and answered questions are also given.