You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Mechanics is one of the oldest and at the same time newest disciplines, in the sense that there are methods and principles developed first in mechanics but now widely used in almost all branches of physics: electrodynamics, quantum mechanics, classical and quantum field theory, special and general theory of relativity, etc. More than that, there are some formalisms like Lagrangian and Hamiltonian approaches, which represent the key stone for the development of the above-mentioned disciplines. During the last 20-25 years, classical mechanics has undergone an important revival associated with the progress in non-linear dynamics, applications of Noether’s theorem and the extension of variatio...
Mechanics is one of the oldest and at the same time newest disciplines, in the sense that there are methods and principles developed first in mechanics but now widely used in almost all branches of physics: electrodynamics, quantum mechanics, classical and quantum field theory, special and general theory of relativity, etc. More than that, there are some formalisms like Lagrangian and Hamiltonian approaches, which represent the key stone for the development of the above-mentioned disciplines. During the last 20-25 years, classical mechanics has undergone an important revival associated with the progress in non-linear dynamics, applications of Noether’s theorem and the extension of variatio...
This book is devoted to the fundamentals of classical electrodynamics, one of the most beautiful and productive theories in physics. A general survey on the applicability of physical theories shows that only few theories can be compared to electrodynamics. Essentially, all electric and electronic devices used around the world are based on the theory of electromagnetism. It was Maxwell who created, for the first time, a unified description of the electric and magnetic phenomena in his electromagnetic field theory. Remarkably, Maxwell’s theory contained in itself also the relativistic invariance of the special relativity, a fact which was discovered only a few decades later. The present book...
Symmetries in Quantum Mechanics: From Angular Momentum to Supersymmetry (PBK) provides a thorough, didactic exposition of the role of symmetry, particularly rotational symmetry, in quantum mechanics. The bulk of the book covers the description of rotations (geometrically and group-theoretically) and their representations, and the quantum theory of angular momentum. Later chapters introduce more advanced topics such as relativistic theory, supersymmetry, anyons, fractional spin, and statistics. With clear, in-depth explanations, the book is ideal for use as a course text for postgraduate and advanced undergraduate students in physics and those specializing in theoretical physics. It is also useful for researchers looking for an accessible introduction to this important area of quantum theory.
This book gives an overview of present and future particle accelerator experiments, and also of astroparticle physics experiments. Relevant physics is discussed in detail in theoretical contributions.
This book is the second edition of an excellent undergraduate-level overview of classical and modern physics, intended for students of physics and related subjects, and also perfectly suited for the education of physics teachers. The twelve-chapter book begins with Newton’s laws of motion and subsequently covers topics such as thermodynamics and statistical physics, electrodynamics, special and general relativity, quantum mechanics and cosmology , the standard model and quantum chromodynamics. The writing is lucid, and the theoretical discussions are easy to follow for anyone comfortable with standard mathematics. An important addition in this second edition is a set of exercises and probl...
This book is a translation of the 8th edition of Prof. Kazuhiko Nishijima’s classical textbook on quantum field theory. It is based on the lectures the Author gave to students and researchers with diverse interests over several years in Japan. The book includes both the historical development of QFT and its practical use in theoretical and experimental particle physics, presented in a pedagogical and transparent way and, in several parts, in a unique and original manner. The Author, Academician Nishijima, is the inventor (independently from Murray Gell-Mann) of the third (besides the electric charge and isospin) quantum number in particle physics: strangeness. He is also most known for his...
In the past decade there has been an extemely rapid growth in the interest and development of quantum group theory.This book provides students and researchers with a practical introduction to the principal ideas of quantum groups theory and its applications to quantum mechanical and modern field theory problems. It begins with a review of, and introduction to, the mathematical aspects of quantum deformation of classical groups, Lie algebras and related objects (algebras of functions on spaces, differential and integral calculi). In the subsequent chapters the richness of mathematical structure and power of the quantum deformation methods and non-commutative geometry is illustrated on the dif...
This book has been prepared to celebrate the 65th birthday of Gabriele Veneziano and his retirement from CERN in September 2007. This reti- ment certainly will not mark the end of his extraordinary scienti?c career (in particular, he will remain on the permanent sta? of the Coll` ege de France in Paris), but we believe that this important step deserves a special celebration, and an appropriate recognition of his monumental contribution to physics. Our initial idea of preparing a volume of Selected papers of Professor Gabriele Veneziano, possibly with some added commentary, was dismissed when we realized that this format of book, very popular in former times, has become redundant today because of the full “digitalization” of all important physical journals, and their availability online in the electronic archives. We have thus preferred an alternative (and unconventional, but probably more e?ective) form of celebrating Gabriele’s birthday: a collection of new papers written by his main collaborators and friends on the various aspects of th- retical physics that have been the object of his research work, during his long and fruitful career.
This book addresses the theoretical, phenomenological and experimental aspects of supersymmetry in particle physics as well as its implications in cosmology.