You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Bankruptcy prediction is one of the most important research areas in corporate finance. Bankruptcies are an indispensable element of the functioning of the market economy, and at the same time generate significant losses for stakeholders. Hence, this book was established to collect the results of research on the latest trends in predicting the bankruptcy of enterprises. It suggests models developed for different countries using both traditional and more advanced methods. Problems connected with predicting bankruptcy during periods of prosperity and recession, the selection of appropriate explanatory variables, as well as the dynamization of models are presented. The reliability of financial data and the validity of the audit are also referenced. Thus, I hope that this book will inspire you to undertake new research in the field of forecasting the risk of bankruptcy.
This collection of essays by a series of academic specialists examines the crisis stemming from the Russian invasion of Georgia in August 2008 from a range of standpoints. The chapters probe the geopolitical and strategic dimensions of the crisis as well as the longer term military and diplomatic implications for Europe and the central Asian region. The collection will be of major importance to students of Russia and Eastern Europe, military analysts as well as journalists and politicians concerned with what some observers have termed a "new cold war" between Russia and the West. This book was published as a special issue of Small Wars and Insurgencies.
This handbook presents the state of the art of quantitative methods and models to understand and assess the science and technology system. Focusing on various aspects of the development and application of indicators derived from data on scholarly publications, patents and electronic communications, the individual chapters, written by leading experts, discuss theoretical and methodological issues, illustrate applications, highlight their policy context and relevance, and point to future research directions. A substantial portion of the book is dedicated to detailed descriptions and analyses of data sources, presenting both traditional and advanced approaches. It addresses the main bibliograph...
An essential guide to two burgeoning topics in machine learning – classification trees and ensemble learning Ensemble Classification Methods with Applications in R introduces the concepts and principles of ensemble classifiers methods and includes a review of the most commonly used techniques. This important resource shows how ensemble classification has become an extension of the individual classifiers. The text puts the emphasis on two areas of machine learning: classification trees and ensemble learning. The authors explore ensemble classification methods’ basic characteristics and explain the types of problems that can emerge in its application. Written by a team of noted experts in ...
None
None
Tree-based Methods for Statistical Learning in R provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary. Building a strong foundation for how individual decision trees work will help readers better understand tree-based ensembles at a deeper level, which lie at the cutting edge of modern statistical and machine learning methodology. The book follows up most ideas and mathematical concepts with code-based examples in the R statistical language; with an emphasis on using as few external packages as possible. For example, user...