Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Functional Analysis and Evolution Equations
  • Language: en
  • Pages: 643

Functional Analysis and Evolution Equations

Gunter Lumer was an outstanding mathematician whose works have great influence on the research community in mathematical analysis and evolution equations. He was at the origin of the breath-taking development the theory of semigroups saw after the pioneering book of Hille and Phillips from 1957. This volume contains invited contributions presenting the state of the art of these topics and reflecting the broad interests of Gunter Lumer.

Differential Equations
  • Language: en
  • Pages: 303

Differential Equations

  • Type: Book
  • -
  • Published: 2006-06-09
  • -
  • Publisher: CRC Press

With contributions from some of the leading authorities in the field, the work in Differential Equations: Inverse and Direct Problems stimulates the preparation of new research results and offers exciting possibilities not only in the future of mathematics but also in physics, engineering, superconductivity in special materials, and other scientifi

Fluids Under Pressure
  • Language: en
  • Pages: 647

Fluids Under Pressure

This contributed volume is based on talks given at the August 2016 summer school “Fluids Under Pressure,” held in Prague as part of the “Prague-Sum” series. Written by experts in their respective fields, chapters explore the complex role that pressure plays in physics, mathematical modeling, and fluid flow analysis. Specific topics covered include: Oceanic and atmospheric dynamics Incompressible flows Viscous compressible flows Well-posedness of the Navier-Stokes equations Weak solutions to the Navier-Stokes equations Fluids Under Pressure will be a valuable resource for graduate students and researchers studying fluid flow dynamics.

Partial Differential Equations and Functional Analysis
  • Language: en
  • Pages: 294

Partial Differential Equations and Functional Analysis

Capturing the state of the art of the interplay between partial differential equations, functional analysis, maximal regularity, and probability theory, this volume was initiated at the Delft conference on the occasion of the retirement of Philippe Clément. It will be of interest to researchers in PDEs and functional analysis.

Semigroup Theory and Evolution Equations
  • Language: en
  • Pages: 544

Semigroup Theory and Evolution Equations

  • Type: Book
  • -
  • Published: 2023-05-31
  • -
  • Publisher: CRC Press

Proceedings of the Second International Conference on Trends in Semigroup Theory and Evolution Equations held Sept. 1989, Delft University of Technology, the Netherlands. Papers deal with recent developments in semigroup theory (e.g., positive, dual, integrated), and nonlinear evolution equations (e

Nigel J. Kalton Selecta
  • Language: en
  • Pages: 769

Nigel J. Kalton Selecta

  • Type: Book
  • -
  • Published: 2016-07-05
  • -
  • Publisher: Birkhäuser

This book is the first part of a two volume anthology comprising a selection of 49 articles that illustrate the depth, breadth and scope of Nigel Kalton’s research. Each article is accompanied by comments from an expert on the respective topic, which serves to situate the article in its proper context, to successfully link past, present and hopefully future developments of the theory, and to help readers grasp the extent of Kalton’s accomplishments. Kalton’s work represents a bridge to the mathematics of tomorrow, and this book will help readers to cross it. Nigel Kalton (1946-2010) was an extraordinary mathematician who made major contributions to an amazingly diverse range of fields over the course of his career.

Quasi-Ordinary Power Series and Their Zeta Functions
  • Language: en
  • Pages: 100

Quasi-Ordinary Power Series and Their Zeta Functions

The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function $Z_{\text{DL}}(h,T)$ of a quasi-ordinary power series $h$ of arbitrary dimension over an algebraically closed field of characteristic zero from its characteristic exponents without using embedded resolution of singularities. This allows us to effectively represent $Z_{\text{DL}}(h,T)=P(T)/Q(T)$ such that almost all the candidate poles given by $Q(T)$ are poles. Anyway, these candidate poles give eigenvalues of the monodromy action on the complex $R\psi_h$ of nearby cycles on $h^{-1}(0).$ In particular we prove in this case the monodromy conjecture made by Denef-Loeser for the local motivic zeta function and the local topological zeta function. As a consequence, if $h$ is a quasi-ordinary polynomial defined over a number field we prove the Igusa monodromy conjecture for its local Igusa zeta function.

Frames and Harmonic Analysis
  • Language: en
  • Pages: 358

Frames and Harmonic Analysis

This volume contains the proceedings of the AMS Special Sessions on Frames, Wavelets and Gabor Systems and Frames, Harmonic Analysis, and Operator Theory, held from April 16-17, 2016, at North Dakota State University in Fargo, North Dakota. The papers appearing in this volume cover frame theory and applications in three specific contexts: frame constructions and applications, Fourier and harmonic analysis, and wavelet theory.

Maximum Principles on Riemannian Manifolds and Applications
  • Language: en
  • Pages: 118

Maximum Principles on Riemannian Manifolds and Applications

Aims to introduce the reader to various forms of the maximum principle, starting from its classical formulation up to generalizations of the Omori-Yau maximum principle at infinity obtained by the authors.

The Complex Monge-Ampere Equation and Pluripotential Theory
  • Language: en
  • Pages: 82

The Complex Monge-Ampere Equation and Pluripotential Theory

We collect here results on the existence and stability of weak solutions of complex Monge-Ampere equation proved by applying pluripotential theory methods and obtained in past three decades. First we set the stage introducing basic concepts and theorems of pluripotential theory. Then the Dirichlet problem for the complex Monge-Ampere equation is studied. The main goal is to give possibly detailed description of the nonnegative Borel measures which on the right hand side of the equation give rise to plurisubharmonic solutions satisfying additional requirements such as continuity, boundedness or some weaker ones. In the last part, the methods of pluripotential theory are implemented to prove the existence and stability of weak solutions of the complex Monge-Ampere equation on compact Kahler manifolds. This is a generalization of the Calabi-Yau theorem.