You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Literally an entire course between two covers, Measurement Uncertainty: Methods and Applications, Fourth Edition, presents engineering students with a comprehensive tutorial of measurement uncertainty methods in a logically categorized and readily utilized format. The new uncertainty technologies embodied in both U.S. and international standards have been incorporated into this text with a view toward understanding the strengths and weaknesses of both. The book is designed to also serve as a practical desk reference in situations that commonly confront an experimenter. The text presents the basics of the measurement uncertainty model, non-symmetrical systematic standard uncertainties, random standard uncertainties, the use of correlation, curve-fitting problems, and probability plotting, combining results from different test methods, calibration errors, and uncertainty propagation for both independent and dependent error sources. The author draws on years of experience in industry to direct special attention to the problem of developing confidence in uncertainty analysis results and using measurement uncertainty to select instrumentation systems.
Stigler shows how statistics arose from the interplay of mathematical concepts and the needs of several applied sciences. His emphasis is upon how methods of probability theory were developed for measuring uncertainty, for reducing uncertainty, and as a conceptual framework for quantitative studies in the social sciences.
All measurements are subject to error because no quantity can be known exactly; hence, any measurement has a probability of lying within a certain range. The more precise the measurement, the smaller the range of uncertainty. Uncertainty, Calibration and Probability is a comprehensive treatment of the statistics and methods of estimating these calibration uncertainties. The book features the general theory of uncertainty involving the combination (convolution) of non-Gaussian, student t, and Gaussian distributions; the use of rectangular distributions to represent systematic uncertainties; and measurable and nonmeasurable uncertainties that require estimation. The author also discusses sourc...
This book fulfills the global need to evaluate measurement results along with the associated uncertainty. In the book, together with the details of uncertainty calculations for many physical parameters, probability distributions and their properties are discussed. Definitions of various terms are given and will help the practicing metrologists to grasp the subject. The book helps to establish international standards for the evaluation of the quality of raw data obtained from various laboratories for interpreting the results of various national metrology institutes in an international inter-comparisons. For the routine calibration of instruments, a new idea for the use of pooled variance is introduced. The uncertainty calculations are explained for (i) independent linear inputs, (ii) non-linear inputs and (iii) correlated inputs. The merits and limitations of the Guide to the Expression of Uncertainty in Measurement (GUM) are discussed. Monte Carlo methods for the derivation of the output distribution from the input distributions are introduced. The Bayesian alternative for calculation of expanded uncertainty is included. A large number of numerical examples is included.
This short guide to modern error analysis is primarily intended to be used in undergraduate laboratories in the physical sciences. No prior knowledge of statistics is assumed. The necessary concepts are introduced where needed and illustrated graphically. The book emphasises the use of computers for error calculations and data fitting.
The expression of uncertainty in measurement poses a challenge since it involves physical, mathematical, and philosophical issues. This problem is intensified by the limitations of the probabilistic approach used by the current standard (the GUM Instrumentation Standard). This text presents an alternative approach. It makes full use of the mathematical theory of evidence to express the uncertainty in measurements. Coverage provides an overview of the current standard, then pinpoints and constructively resolves its limitations. Numerous examples throughout help explain the book’s unique approach.
Measurement shapes scientific theories, characterises improvements in manufacturing processes and promotes efficient commerce. In concert with measurement is uncertainty, and students in science and engineering need to identify and quantify uncertainties in the measurements they make. This book introduces measurement and uncertainty to second and third year students of science and engineering. Its approach relies on the internationally recognised and recommended guidelines for calculating and expressing uncertainty (known by the acronym GUM). The statistics underpinning the methods are considered and worked examples and exercises are spread throughout the text. Detailed case studies based on typical undergraduate experiments are included to reinforce the principles described in the book. This guide is also useful to professionals in industry who are expected to know the contemporary methods in this increasingly important area. Additional online resources are available to support the book at www.cambridge.org/9780521605793.
"All measurements are subject to error because no quantity can be known exactly; hence, any measurement has a probability of lying within a certain range. The more precise the measurement, the smaller the range of uncertainty. Uncertainty, Calibration and Probability is a comprehensive treatment of the statistics and methods of estimating these calibration uncertainties. The book features the general theory of uncertainty involving the combination (convolution) of non-Gaussian, student t, and Gaussian distributions; the use of rectangular distributions to represent systematic uncertainties; and measurable and nonmeasurable uncertainties that require estimation. The author also discusses sour...
"This introduction to measurement uncertainty is intended for metrology professionals working in calibration laboratories and metrology institutes, as well as students in tertiary-level science and engineering programmes. The subject matter is presented with an emphasis on developing models of the physical measurement process. The level of mathematics and statistics used is basic and is typically covered by high school studies"--Distributor's website.