You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
The book describes the theoretical fundamentals of atmospheric optics as a science of propagation, transformation and generation of electromagnetic radiation in the atmosphere from ultraviolet to microwave radiation. The main characteristics of the planets of the solar system and their atmospheres are given. The equation of the transfer of radiation in different spectral ranges, absorption of radiation by atmospheric gases and aerosol, molecular, aerosol and other types of nonresonant scattering, atmospheric refraction, reflection of radiation from the surface, and glow of the atmosphere are discussed. Methods of calculating radiation for the solar and thermal range of the spectrum are outli...
Some Statistical Determinations of the Instability of Television Images of Stars.- Images of the Lunar Limb and Heterogeneity Layers in the Troposphere.- Measuring Limb Vibrations of Solar Images.- Vibration of Star Images in Telescopes as a Function of Zenith Distance.- Distribution of Wave-Front Distortions That Cause Star-Image Vibration.- The Probability of Obtaining Good Star Images with Short-Exposure Photography.- Electronic Systems for Short-Exposure Photography of Celestial Objects.- Eliminating Multiple Scattering and Reflection of Light from the Underlying Surface from the Scatterin.
In recent years, the problem of seeing through the atmosphere has been given intensive and costly consideration in several quarters, but particularly in the Untied States and Great Britain. A problem which once concerned mainly the meteorologists has become of great importance in military tactics as well as in peacetime transportation. The present volume is the only full account in English of the physical, physiological, and psychological factors which lie at the basis of the calculation of the range of vision through the atmosphere. There is an extended chapter on instruments and one on the author's own theory of the colours of distant objects. The figures are from many sources althrough many of them have been drawn specially for this book. The bibliography contains 420 entries nearly all of which are directly referred to in the text.
This monograph is devoted to urgent questions of the theory and applications of the Monte Carlo method for solving problems of atmospheric optics and hydrooptics. The importance of these problems has grown because of the increas ing need to interpret optical observations, and to estimate radiative balance precisely for weather forecasting. Inhomogeneity and sphericity of the atmos phere, absorption in atmospheric layers, multiple scattering and polarization of light, all create difficulties in solving these problems by traditional methods of computational mathematics. Particular difficulty arises when one must solve nonstationary problems of the theory of transfer of narrow beams that are co...
This monograph is devoted to urgent questions of the theory and applications of the Monte Carlo method for solving problems of atmospheric optics and hydrooptics. The importance of these problems has grown because of the increas ing need to interpret optical observations, and to estimate radiative balance precisely for weather forecasting. Inhomogeneity and sphericity of the atmos phere, absorption in atmospheric layers, multiple scattering and polarization of light, all create difficulties in solving these problems by traditional methods of computational mathematics. Particular difficulty arises when one must solve nonstationary problems of the theory of transfer of narrow beams that are co...
A study of atmospheric adaptive optics. It covers: adaptive phase correction of optical wave distortions in random inhomogeneous media; enhancement of images transmitted through the atmosphere by methods of adaptive optics; and equations for the moment of the corrected field.
The material in this Field Guide is a condensed version of similar material found in two textbooks: Laser Beam Propagation through Random Media (SPIE Vol. PM53) and Laser Beam Scintillation with Applications (SPIE Vol. PM99). Topics chosen for this concise presentation include a review of classical Kolmogorov turbulence theory, Gaussian-beam waves in free space, and atmospheric effects on a propagating optical wave. These atmospheric effects have great importance in a variety of applications like imaging, free space optical communications, laser radar, and remote sensing. This Guide presents tractable mathematical models from which the practitioner can readily determine beam spreading, beam wander, spatial coherence radius (Fried's parameter), angle of arrival fluctuations, scintillation, aperture averaging effects, fade probabilities, bit error-rates, and enhanced backscatter effects, among others.