You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Automated planning is known to be computationally hard in the general case. Propositional planning is PSPACE-complete and first-order planning is undecidable. One method for analyzing the computational complexity of planning is to study restricted subsets of planning instances, with the aim of differentiating instances with varying complexity. We use this methodology for studying the computational complexity of planning. Finding new tractable (i.e. polynomial-time solvable) problems has been a particularly important goal for researchers in the area. The reason behind this is not only to differentiate between easy and hard planning instances, but also to use polynomial-time solvable instances...
This book constitutes the refereed proceedings of the 21st International Conference on Theory and Applications of Satisfiability Testing, SAT 2018, held in Oxford, UK, in July 2018. The 20 revised full papers, 4 short papers, and 2 tool papers were carefully reviewed and selected from 58 submissions. The papers address different aspects of SAT interpreted in a broad sense, including theoretical advances (such as exact algorithms, proof complexity, and other complexity issues), practical search algorithms, knowledge compilation, implementation-level details of SAT solvers and SAT-based systems, problem encodings and reformulations, applications as well as case studies and reports on findings based on rigorous experimentation. They are organized in the following topical sections: maximum satisfiability; conflict driven clause learning; model counting; quantified Boolean formulae; theory; minimally unsatisfiable sets; satisfiability modulo theories; and tools and applications.
Today, many embedded or cyber-physical systems, e.g., in the automotive domain, comprise several control applications, sharing the same platform. It is well known that such resource sharing leads to complex temporal behaviors that degrades the quality of control, and more importantly, may even jeopardize stability in the worst case, if not properly taken into account. In this thesis, we consider embedded control or cyber-physical systems, where several control applications share the same processing unit. The focus is on the control-scheduling co-design problem, where the controller and scheduling parameters are jointly optimized. The fundamental difference between control applications and tr...
Development of new functionality and smart systems for different types of vehicles is accelerating with the advent of new emerging technologies such as connected and autonomous vehicles. To ensure that these new systems and functions work as intended, flexible and credible evaluation tools are necessary. One example of this type of tool is a driving simulator, which can be used for testing new and existing vehicle concepts and driver support systems. When a driver in a driving simulator operates it in the same way as they would in actual traffic, you get a realistic evaluation of what you want to investigate. Two advantages of a driving simulator are (1.) that you can repeat the same situati...
Probabilistic topic models have proven to be an extremely versatile class of mixed-membership models for discovering the thematic structure of text collections. There are many possible applications, covering a broad range of areas of study: technology, natural science, social science and the humanities. In this thesis, a new efficient parallel Markov Chain Monte Carlo inference algorithm is proposed for Bayesian inference in large topic models. The proposed methods scale well with the corpus size and can be used for other probabilistic topic models and other natural language processing applications. The proposed methods are fast, efficient, scalable, and will converge to the true posterior d...
There is currently an increasing demand for concurrent programs. Checking the correctness of concurrent programs is a complex task due to the interleavings of processes. Sometimes, violation of the correctness properties in such systems causes human or resource losses; therefore, it is crucial to check the correctness of such systems. Two main approaches to software analysis are testing and formal verification. Testing can help discover many bugs at a low cost. However, it cannot prove the correctness of a program. Formal verification, on the other hand, is the approach for proving program correctness. Model checking is a formal verification technique that is suitable for concurrent programs...
More and more services are moving to the cloud, attracted by the promise of unlimited resources that are accessible anytime, and are managed by someone else. However, hosting every type of service in large cloud datacenters is not possible or suitable, as some emerging applications have stringent latency or privacy requirements, while also handling huge amounts of data. Therefore, in recent years, a new paradigm has been proposed to address the needs of these applications: the edge computing paradigm. Resources provided at the edge (e.g., for computation and communication) are constrained, hence resource management is of crucial importance. The incoming load to the edge infrastructure varies...
This thesis presents Machine Psychology as an interdisciplinary paradigm that integrates learning psychology principles with an adaptive computer system for the development of Artificial General Intelligence (AGI). By synthesizing behavioral psychology with a formal intelligence model, the Non-Axiomatic Reasoning System (NARS), this work explores the potential of operant conditioning paradigms to advance AGI research. The thesis begins by introducing the conceptual foundations of Machine Psychology, detailing its alignment with the theoretical constructs of learning psychology and the formalism of NARS. It then progresses through a series of empirical studies designed to systematically inves...
Services are prone to change in the form of expected and unexpected variations and disruptions, more so given the increasing interconnectedness and complexity of service systems today. These changes require service systems to be resilient and designed to adapt, to ensure that services continue to work smoothly. This thesis problematises the prevailing view and assumptions underpinning the current understanding of resilience in services. Drawing on literature from service management, service design, systems thinking and social-ecological resilience theory, this work investigates how service design can foster resilience in service systems. Supported by empirical input from three research proje...
This thesis addresses the need to balance the use of facial recognition systems with the need to protect personal privacy in machine learning and biometric identification. As advances in deep learning accelerate their evolution, facial recognition systems enhance security capabilities, but also risk invading personal privacy. Our research identifies and addresses critical vulnerabilities inherent in facial recognition systems, and proposes innovative privacy-enhancing technologies that anonymize facial data while maintaining its utility for legitimate applications. Our investigation centers on the development of methodologies and frameworks that achieve k-anonymity in facial datasets; levera...