You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a compilation of lecture notes that were prepared for the graduate course ``Adams Spectral Sequences and Stable Homotopy Theory'' given at The Fields Institute during the fall of 1995. The aim of this volume is to prepare students with a knowledge of elementary algebraic topology to study recent developments in stable homotopy theory, such as the nilpotence and periodicity theorems. Suitable as a text for an intermediate course in algebraic topology, this book provides a direct exposition of the basic concepts of bordism, characteristic classes, Adams spectral sequences, Brown-Peterson spectra and the computation of stable stems. The key ideas are presented in complete detail without becoming encyclopedic. The approach to characteristic classes and some of the methods for computing stable stems have not been published previously. All results are proved in complete detail. Only elementary facts from algebraic topology and homological algebra are assumed. Each chapter concludes with a guide for further study.
The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of $K$-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty years has been based on a careful study of these special classes. While there are many books on C*-al...
Explores the global dynamics of a class of ordinary differential equations called cyclic feedback systems. The global dynamics is described by a Morse decomposition of the global attractor, defined with the help of a discrete Lyapunov function. A three-dimensional system of ODE's with two linear equations is constructed, such that the invariant set is at least as complicated as a suspension of a full shift on two symbols. No index. Annotation copyrighted by Book News, Inc., Portland, OR
This book is intended for graduate students and research mathematicians working in classical linear algebraic
This book resulted from the lectures held at The Fields Institute (Waterloo, ON, Canada). Leading international experts presented current results on the theory of C*-algebras and von Neumann algebras, together with recent work on the classification of C*-algebras. Much of the material in the book is appearing here for the first time and is not available elsewhere in the literature.
An important idea in the work of G.-C. Rota is that certain combinatorial objects give rise to Hopf algebras that reflect the manner in which these objects compose and decompose. Recent work has seen the emergence of several interesting Hopf algebras of this kind, which connect diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This monograph presents a novel geometric approach using Coxeter complexes and the projection maps of Tits for constructing and studying many of these objects as well as new ones. The first three chapters introduce the necessary background ideas making this work accessible to advanced graduate students. The later chapters culminate in a unified and conceptual construction of several Hopf algebras based on combinatorial objects which emerge naturally from the geometric viewpoint. This work lays a foundation and provides new insights for further development of the subject.
This book is intended for graduate students and research mathematicians working in algebraic geometry
This monograph is concerned with Galois theoretical embedding problems of so-called Brauer type with a focus on 2-groups and on finding explicit criteria for solvability and explicit constructions of the solutions. The advantage of considering Brauer type embedding problems is their comparatively simple condition for solvability in the form of an obstruction in the Brauer group of the ground field. The book presupposes knowledge of classical Galois theory and the attendant algebra. Before considering questions of reducing the embedding problems and reformulating the solvability criteria, the author provides the necessary theory of Brauer groups, group cohomology and quadratic forms. The book will be suitable for students seeking an introduction to embedding problems and inverse Galois theory. It will also be a useful reference for researchers in the field.
The theory of graph coloring has existed for more than 150 years. Historically, graph coloring involved finding the minimum number of colors to be assigned to the vertices so that adjacent vertices would have different colors. From this modest beginning, the theory has become central in discrete mathematics with many contemporary generalizations and applications. Generalization of graph coloring-type problems to mixed hypergraphs brings many new dimensions to the theory ofcolorings. A main feature of this book is that in the case of hypergraphs, there exist problems on both the minimum and the maximum number of colors. This feature pervades the theory, methods, algorithms, and applications o...
Much of the importance of mathematics lies in its ability to provide theories which are useful in widely different fields of endeavour. A good example is the large and amorphous body of knowledge known as the theory of linear operators or operator theory, which came to life about a century ago as a theory to encompass properties common to matrix, differential, and integral operators. Thus, it is a primary purpose of operator theory to provide a coherent body of knowledge which can explain phenomena common to the enormous variety of problems in which such linear operators play a part. The theory is a vital part of functional analysis, whose methods and techniques are one of the major advances of twentieth century mathematics and now play a pervasive role in the modeling of phenomena in probability, imaging, signal processing, systems theory, etc, as well as in the more traditional areas of theoretical physics and mechanics. This book is based on lectures presented at a meeting on operator theory and its applications held at the Fields Institute in 1994.