You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Mercury (Hg) is a global pollutant that knows no environmental boundaries. Even the most stringent control of anthropogenic Hg sources will not eliminate exposure given its ubiquitous presence. Exposure to Hg occurs primarily via the food chain due to MeHg’s accumulation in fish. Latest US statistics indicate that 46 States have fish consumption advisories. In addition, Hg is a common pollutant in hazardous waste sites, with an estimated 3-4 million children living within one mile of at least one of the 1,300+ active hazardous waste sites in the US. The effects on intellectual function in children prenatally exposed to MeHg via maternal fish consumption have been the subject of two on-goin...
Environmental Factors in Neurodevelopmental and Neurodegenerative Disorders presents a state-of-the-art review of the effects of environmental contaminants on the development and degeneration of the human nervous system, brought together by world-leading experts in the field. Part One describes the adverse effects that the environment can have on neurological development, and how these effects may exhibit. Specific contaminants and their possible consequences of exposure are addressed (lead, methylmercury, alcohol), as well as specific disorders and the environmental factors associated with them, such as the effect of diet on attention deficit and hyperactivity disorders. Part Two tackles ne...
Presenting the latest research in glial cell function gleaned from new techniques in imaging and molecular biology, The Role of Glia in Neurotoxicity, Second Edition covers multiple aspects of glial cells, including morphology, physiology, pharmacology, biochemistry, pathology, and their involvement in the pathophysiology of neurological diseases.
Role of Inflammation in Environmental Neurotoxicity, Volume Three, in this comprehensive serial, addresses contemporary advances in neurotoxicology by providing authoritative review articles on key issues in the field. Edited by leading subject experts, topics of note in this new release include Neuroinflammation (Introduction), Organophosphates, Lead, Manganese, Drugs of abuse, Peripheral vs central inflammation, Air pollution, Developmental neurotoxicity, Ethanol, and the Blood brain barrier, amongst other topics.
Neurotoxicity of Pesticides, Volume Four, in this comprehensive serial addresses contemporary advances in neurotoxicology of pesticides by providing authoritative review articles on key issues in the field. Edited by leading subject experts, topics of note in this new release include Organophosphates, OPs, Nerve agents, Pyrethroids, Neonicotinoids and Formamidines, among others.
Contributors to this second volume discuss metal and toxicant toxicity, their environmental sources and methods of action, and their regulation by courts and agencies.
Presents the latest research findings on and introduces new research techniques for the study of the effects of alcohol on glial cells. Includes reviews of research findings and techniques used to study astrocytes, oligodendroglia, and microglia; findings on the influence of alcohol on glial cells during development; the role of astrocytes in alcohol-induced damage of the neuroimmune system; the role of glial cells in alcohol-induced neuropathology; the involvement of astrocytes in hepatic encephalopathy; new imaging techniques capable of separating glial and neuronal images in alcohol-induced brain atrophy; and information on alcoholic-induced disturbances in neurosteroid production by glial cells.
This volume discusses the requirements, advantages, and limitations of studying cell culture. The chapters in this book cover topics such as in vitro blood-brain barrier functional assays in human iPSC-based models; neuron-glia interactions examines with in vitro co-culture; epigenetic changes in cultures neurons and astrocytes; rat brain slices; brain punching technique; and using microRNA for in vitro neurotoxicity testing and related disorders. In Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory. Authoritative and cutting-edge, Cell Culture Techniques, Second Edition is a valuable resource for students and experiences researchers who are interested in learning more and making risk decisions in this evolving field.
Volume 7, devoted to the vital and rapidly expanding research area around metal-carbon bonds (see also MILS-6), focuses on the environment. With more than 2500 references, 35 tables, and nearly 50 illustrations, many of these in color, it is an essential resource for scientists working in the wide range from organometallic chemistry, inorganic biochemistry, environmental toxicology all the way through to physiology and medicine. In 14 stimulating chapters, written by 29 internationally recognized experts, Organometallics in Environment and Toxicology highlights in an authoritative and timely manner environmental cycles of elements involving organometal(loid) compounds as well as the analytical determination of such species. This book examines methane formation involving the nickel coenzyme F430, as well as the organometal(loid) compounds formed by tin, lead, arsenic, antimony, bismuth, selenium, tellurium, and mercury. In addition, it deals with the environmental bioindication, biomonitoring, and bioremediation of organometal(loid)s, and it terminates with methylated metal(loid) species occurring in humans by evaluating assumed and proven health effects caused by these compounds.
Metal ions in the brain are a necessity as well as a poison. The presence of metal ions in the active sites of biological catalysts or metalloproteins and in the biological functioning of nucleic acids is very well documented and they are required for brain activity. On the other hand, metals are very effective in generating oxidative stress. This effect does not only play a role in immunology but also is the root of practically all neurodegenerative disorders by inducing disease via the death of neurons. Managing metal ions in the brain could therefore be an important strategy in the search for therapeutic agents used in the treatment of neurodegenerative diseases. This new title gives an overview to key topics in the area of metal ions in the brain. It focuses on the role of metal ions in neurological systems by describing their advantageous functions as well as their poisonous features. It is therefore of interest for scientists in biochemistry and biophysics, physiology, toxicology as well as for physicians focused on this topic.